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In Memoriam Paul Hobley.

Science is all about looking for unifying theories even if they are not there.

P. Hobley (23/4/93)
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Summary

This thesis demonstrates by example how dynamic stochastic con-
trol methods may usefully be applied to tackle problems of tree search-
ing and computer game-playing. Underlying this work is the constant
tension between what is optimal in theory and what is implementable
in practice. Most of the games studied are solved (under certain con-
ditions) in the sense that a policy is derived which is both optimal
and implementable. We examine the various reasons why the general
problem of devising an algorithm to play a perfect information game
in real time cannot have such a solution, and consider how to respond
to this difficulty.

Chapter 1 defines the nature of the problem by introducing the
concept of a game tree and explaining the concept of selectivity in
game tree search. It then reviews the most important game tree search
methods.

Chapter 2 explains what a Markov chain model of computer game-
playing might include. It then introduces a much simpler one-player
search game and establishes optimal policy under certain conditions.
It also contains analysis of a discrete fuel control problem, which was
developed as an offshoot of this research.

Chapter 3 details a stochastic satisficing tree search model, and ex-
plains the relationship with the standard bandit models. The optimal
policy is established, and some important extensions presented.

Chapter 4 considers the difficulties of extending this model to a
two-player game tree.

Chapter 5 highlights the connection between the problem of time-
and search-control. The chapter then provides an overview of the
approaches taken to the problem of time control, before proving an
optimal time- and search-control policy for a simple two-player game.

Chapter 6 is the most wide ranging in its scope and is approachable
to the artificial intelligence researcher less familiar with the language
of dynamic stochastic control. It presents a new selective search al-
gorithm, PCN*, and highlights problems with some of the existing
game-playing models.
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1 Game Tree Search

A game tree is a tree which represents the current state and possible future

states of a game. The nodes correspond to game positions, while the arcs

which connect them correspond to moves. Although such a framework allows

treatment of very general games, the attention of this work is limited, on

grounds of tractability, to one-player games and zero-sum two-player games.

The arcs between the positions are implicitly directed, from top to bottom.

A game’s current position is the root of the game tree, which is indicated in

this thesis by a triangle.

Figure 1: A Noughts & Crosses Position and Corresponding Game Tree
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The scalars associated with each node refer to the result of the game.

(-1 = Win for ‘X’, 1 = Win for ‘O’). Some scoring function maps the space

of positions to a portion of the real line. For two-player games, this is very

often finite and centred around 0, the value awarded to games which are

drawn. Note that the scoring function is only explicitly defined for terminal

positions, where no further play is possible. These positions are the leaves

of the game tree, double underlined in Figure 1 on the previous page. It

is however possible to give a meaningful value, called the game theoretic

value or game theoretic score to all the other positions, which is the outcome

assuming both players play perfectly from that point on.

As an example, consider the consequences if ‘O’ plays A3. Position P is

reached, which can be scored as a win for ‘X’, since all moves available to

‘X’ give this result. Position Q can be given a value 1 on similar grounds.

Once position Q has been given a score, it can be considered to be a leaf

of the game tree; when allocating a score to position R, only its immediate

descendants need be taken into account:

The result of a game which has reached position R therefore depends

upon which of the available moves is played. At this point we make the

simplifying assumption (which is probably fairly well-founded in the case of

Noughts and Crosses) that both players are aware of the rest of the game tree

and have scored all of the possible future positions accordingly. Since player

‘X’ chooses which move to play, and by assumption is playing rationally,

we assume that from position R he will play B1. Accordingly, position R

2



Figure 2: Scoring Position R

is assigned a game theoretic value of -1. Formally, ‘X’ chooses whichever

descendant has the minimum game theoretic value. On the other hand, ‘O’

prefers the results in the order {win for ‘O’, draw, win for ‘X’}, and so chooses

whichever descendant has the maximum game theoretic value. This process

of scoring nodes from consideration of their daughters’ score is referred to as

backing-up.

Any two-player zero-sum game of finite length may, in theory at least, be

analysed fully in the above fashion. Once the game tree has been deduced,

and the leaves scored, the remaining nodes of the graph may be given a

game theoretic score by the process just described, termed minimax since

nodes’ scores are alternately minimised and maximised up the tree. When

noughts and crosses is analysed in this fashion, the decision theoretic value

of the root of the game tree is shown to be 0, meaning that neither player
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can force a win. In the last few years, some more interesting games yielded

to this approach; Connect Four [1, 86] and Go-Moku [4] have been shown

to be wins for whoever starts, while Nine Men’s Morris [24] has been shown

to be a draw. Analysis of this kind is possible because the first two games

have some simplifying features, while the last has a relatively small number of

positions. For a large number of games, the sheer size of the game tree means

that the amount of computing power required to trace it all the way down

to the terminal positions renders such an analysis infeasible with current

technology. Table 1 stems from a discussion by Allis, Herschberg and van

den Herik [2] of the possibility of analysing games in this fashion. It is that it

seems safe to conclude that a full analysis of this sort will never be possible for

some games at least, most notably Go, which does not have any simplifying

features such as Go-Moku or Connect Four.

A lot of effort has been invested in deducing good game-playing algo-

rithms for these games, especially Chess. Almost all1 these algorithms work

in a similar fashion: they search a certain portion of the game tree and

then choose a move based upon this limited evidence. The leaves of the tree

searched are not, in general, terminal game positions, so their game theo-

retic score cannot be precisely determined, but is approximated by what is

termed an evaluation function. Although the existence and accuracy of such

1For games in which the branching factor is so high, and position evaluation stable

enough that little can be gained from search, some algorithms do not carry out any search.

Backgammon is the classic example — the world champion was defeated as early as 1980

by such a program [13].
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Nine Men’s Morris ∗ 1011

Connect-Four ∗ 1012

Kalah(Awari) 1012

Backgammon 1019

Draughts (8x8) 1020

Othello 1030

Bridge 1030

Draughts (10x10) 1035

Go (9x9) 1035

Chinese Chess 1045

Chess 1050

Go-Moku ∗ 10105

Renju 10105

Scrabble 10150

Go (19x19) 10170

∗ The game theoretic value of this game is known

Table 1: Estimated Game Tree Sizes of Common Games

a function is vital for the efficacy of the search process, the nature of this

function is a highly game-specific matter and not the subject of this text.

The open question which we shall consider is what portion of the game

tree should be examined, or, more precisely, what method should be used to

determine which portion of the game tree to search. This has been the sub-

ject of much work by the artificial intelligence community since the question

was first raised in 1950 by Shannon [76]. His seminal paper names two main

types of search strategies. Type A strategies, which might more descriptively

be called non-selective, look ahead all possible moves to a fixed depth. Shan-

non’s type B is what is referred to nowadays as the class of selective search

5



algorithms. They have the potential to outperform non-selective search, and

as Shannon states, to do this they must do the following:

“1. Examine forceful variations out as far as possible and evalu-

ate only at reasonable positions, where some quasi-stability

has been established.

2 Select the variations to be explored by some process so that

the machine does not waste its time in totally pointless vari-

ations.”

It is a remarkable fact that, whilst the underlying inefficiency of non-

selective search is obvious, almost all of the world’s strongest game-playing

programs are still based, to a greater or lesser extent, on brute force methods

that bear more resemblance to Shannon’s type A algorithms.

6



1.1 Non-Selective Search Methods

As the name implies, non-selective search methods spend no time in choosing

where to search. This is simultaneously a fundamental flaw and a great

strength. It is a fundamental flaw because it means that the vast proportion

of their deliberations concern utterly pointless sequences of moves which

would not even be considered, far less played, by any human player. It is a

strength because it means that all the time available is spent investigating

the game tree. One further advantage of non-selective search which is used

to great effect is that is that the ‘brute force’ nature of the search allows

for relatively effective parallelisation. By contrast this is not the case for

selective search, since (by definition) previous search results are required in

order to deduce where further search should be carried out.

A major problem of non-selective searching is the so-called ‘horizon effect’.

This phenomenon arises from the termination of search and evaluation of a

position at a point at which it gives a misleading score. As an example,

consider a Chess program which searches to a fixed depth of 5 moves. Naive

full-width searching to this depth is likely to lead to a highly implausible

fifth move (for example, a queen sacrifice to capture a supported piece).

The reason for this is because of the immediate material gain, such a move

will lead to a node with the largest positive score, since the search is not

deep enough to see that the queen can be immediately recaptured. Just as

seriously, if the program is in a position in which search has just revealed

that at some future point it will have to incur some loss, it is liable to play

7



any forcing exchanges available, including those which incur a disadvantage,

in order to ‘postpone the evil hour’ and to push the node at which it will

incur the loss beyond the search horizon.

An instinctive response to the horizon effect might be to tinker slightly

with the position evaluation function to account for recapture, the impor-

tance of supporting pieces en prise and so on. However, anticipating recap-

ture is very similar to just doing more search, and complicating the position

evaluation function generally heralds further problems since every game wor-

thy of serious study has intricacies of its own which are not easily dealt with

in this fashion. The fundamental problem remains that positions have vary-

ing degrees of stability and so varying degrees of search effort are required in

order to deduce position evaluations of comparable accuracy. Any search al-

gorithm which does not model this will suffer from the horizon effect since its

search effort will be terminated by some other, essentially arbitrary, criterion.

The original and most primitive non-selective search method is full-width,

fixed depth minimax — anticipating all possible sequences of moves to some

pre-established depth, d. This has complexity O(bd), where b is the mean

branching factor of the game tree, so even with modern computers it is very

limited for a game such as Chess (where b is around 35). Many refinements

to this basic approach have been developed, to speed up search and to tackle

the horizon effect. We now review the most important.

8



1.1.1 Alpha-Beta Pruning

The most important advance in the area of non-selective search is the de-

velopment of a technique known as alpha-beta pruning, which occurred some

time in the early 1960’s. A good historical discussion of its derivation and

mathematical properties is given by Knuth and Moore [44]. The basic idea

behind alpha-beta pruning may perhaps be explained most succinctly by its

categorisation as a ‘branch and bound’ method, although use of that phrase

in this context has been the subject of some discussion [48].

Figure 3: A Lower Bound on Search

The branch and bound principle is illustrated above in Figure 3. If we

assume that the left-hand node has been reliably scored as 4, the value of R

must therefore be at least 4. The value of Y is therefore only of relevance if it

is greater than 4, so it may therefore be possible to search Y less exhaustively

without jeopardising the accuracy of the minimax score assigned to R.

9



Figure 4: Pruning of a Search Branch

The above figure gives an example of when it is possible to prune a branch

of the search tree. If the search of Y1 shows it to have a score of 3, then the

value of Y is at most 3, so the value of R is 4. The values of the nodes

Y2 . . . YN are of no relevance, so they need not be searched. This procedure

is referred to as pruning, since the Y2 . . .YN branches are removed from the

minimax search tree.

Full alpha-beta pruning is an extension of the procedure above. Instead

of a single bound on the value, two bounds are imposed, as shown overleaf in

Figure 5. The exact value of Z need only be determined if it is in the interval

— or ‘window’ — (4, 6), assuming that nodes X and Y are scored reliably.

In contrast to the full-width fixed-depth minimax search, the alpha-beta

technique is sensitive to the order in which the moves are examined. The

10



Figure 5: An Alpha-beta Pruning Window

process of arranging the moves so that the best is looked at first is termed

move pre-ordering. The ‘perfect ordering’, resulting in the smallest possible

tree, is that which searches the best move first, allowing the strictest bounds

to be used to prune the remainder of the tree.

For a game tree of constant branching factor b, a full-width minimax

search entails a search of O(bd) nodes. If we assume a perfect ordering, then

alpha-beta pruning requires that O(bd/2) nodes be searched if d is even, and

O(b(d+1)/2) if d is odd, a result first proved by Slagle and Dixon [78]. In their

1969 paper they investigate the performance of dynamic-ordering programs

which reorder the moves in an attempt to maximise the extent of the possible

11



pruning. They conclude that:

“The dynamic-ordering programs are only slightly faster than

fixed ordering because the limit of perfect ordering is being ap-

proached.”

Alpha-beta pruning is very simple to implement and imposes minimal

overheads on the time to expand2 a node, and requires no increase in stack

space over simple minimax (d entries). These features, together with the

magnitude of the performance gains which it allows (effectively doubling the

average depth of a simple minimax search) have caused alpha-beta pruning

to become ubiquitous amongst non-selective game-playing programs.

1.1.2 Iterative Deepening

Iterative deepening is a standard feature of alpha-beta search algorithms.

The term refers to the iterative increase (by one) of the fixed depth of the

alpha-beta pruned search. The first benefit of doing this is that it avoids

the issue of how to choose a cut-off depth for the search. If the cut-off

depth chosen is too small the search is not sufficiently deep and so moves are

unnecessarily overlooked. If a search is started with a cut-off depth which

is too great, the search will take too long to complete, and so cannot be

completed before the available time is exhausted. This is likely to be even

2to generate its children and append them to the search information
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worse since the results of a partially completed search are much less reliable

than those of a completed search, albeit a shallower one.

The iterative deepening procedure avoids (in a straightforward fashion)

the problem of over-estimating the cut-off depth. It initially conducts a

search of depth one, then, once this is completed, the depth threshold is

increased by one and the procedure is repeated. This procedure ensures

that if the search time is exhausted during a search of depth N , there is

a completed search of depth N − 1 available. The obvious disadvantage of

this method is that it involves re-searching the nodes at the top of the tree

— some of the top level nodes would have been searched N times. This is,

however, not such a serious drawback since the cost of the separate searches

increases geometrically (on average, by a factor of at least b
1
2 ), so that the cost

of the last completed search dominates the total time spent searching. Much

more important is the fact that the results from each level of search can be

used to expedite the next. This is achieved by exploiting the aforementioned

sensitivity of alpha-beta to the order in which the moves are searched; since,

by and large, a move that is good at depth N−1 is likely to be good at depth

N , considerable saving can be made by pre-ordering the moves for search at

depth N in order of their scores at depth N − 1.
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1.1.3 Null Move Search

This technique arose originally from a need to obtain accurate bounds upon a

node’s value. Palay [62] carried out a pair of 2-ply searches from a node’s po-

sition, one for each player, in which two successive moves were made by that

player. From this he deduced bounds for his PSVB* algorithm mentioned in

Subsection 1.2.5.

The idea was developed by Beal [7, 10] into ‘a generalised quiescence

search applicable to any minimax problem’. Bounds are obtained in a similar

fashion to Palay’s method. Rather than being used to guide selective search,

they are used to narrow the alpha-beta search window. This method assumes,

as does Palay’s, that the null move (passing) is not the best move — an

assumption that is valid for a great proportion of the time in most standard

games.

1.1.4 Singular Extensions

The method of singular extensions, introduced by Anantharaman, Campbell

and Hsu [5] is a ‘modification of brute force search, that allows extensions

to be identified in a dynamic, domain-independent, low-overhead manner’.

An extension to a brute force search algorithm is a modification that causes

deeper search to be carried out for certain nodes of interest. The word

‘dynamic’ means that the algorithm makes a choice about which nodes to

extend based upon results of the search so far carried out. This is contrasted

with other, ‘static’ extensions, that consider a move in isolation. In the game
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of Chess, for example, a commonly employed static extension to the search

tree is to search more deeply those moves which give check or move out of

check. These extensions are successful at increasing performance since they

allow more accurate evaluation of some of the terminal nodes of the brute

force tree.

Anantharaman, Campbell and Hsu make the point that while search ex-

tensions are successful at increasing the performance if applied properly, this

is of necessity a domain-specific matter. This is because the choice of nodes

at which to conduct a static extension is one that is made by human experts,

reflecting the fact that a static extension algorithm encapsulates some knowl-

edge about the game, simple in nature though it may be. Their method does

not need game-specific knowledge, since it extends all nodes which are de-

fined as ‘singular’. These are positions with a backed-up score which exceeds

that of their sisters by at least S. Forced moves are therefore singular, and

these are good candidates for deeper search, since they occur during tacti-

cal encounters where the position evaluation is likely to be unstable. This

method is simple enough not to slow down the search greatly, and so is a

practical if rather ad hoc method of adding some degree of selectivity to a

brute-force search.

1.1.5 Probcut

This technique, developed by Buro [20] he describes as ‘a selective extension

of the alpha-beta algorithm’. In a similar fashion to alpha-beta pruning,
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its function is to prune away uninteresting branches from the search tree,

allowing deeper search. In contrast to the alpha-beta technique, it does

what is referred to as forward pruning. That is, it decides that a branch of

the tree is not relevant before it has been searched at all. This can therefore

achieve greater performance gains at the expense of possibly pruning away a

relevant branch and so deducing a different score from a full-width minimax

search.

This method exploits the fact that the evaluation function is fairly stable:

to simplify somewhat, if a branch is sufficiently unpromising at depth N it

concludes that it is unlikely to be worth searching at depth N + 1 and so

prunes it at that point. It is assumed that v′, the minimax evaluation of

a node when searched to depth d′, may be used as a predictor for v, the

minimax evaluation based upon a search of depth d > d′, according to the

following simple regression:

v = av′ + b + N(0, σ2)

Once d and d′ have been fixed, a data set of positions and search results is

collected, and linear regression used to deduce values for a, b and σ. The

model is then used to prune branches by ignoring those which have a high

probability of falling below the level needed to change the overall minimax

value of the search information. After an empirical study into the effective-

ness of the procedure in his Othello program, Buro set this cut-off threshold,

P , at 0.933.
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Buro’s claim that Probcut is ‘game independent and does not rely on

parameters to be chosen by intuition’ is difficult to reconcile with the fact that

he does not suggest an automated procedure for choosing the search depths d

and d′ or the cut-off threshold, P . Although he achieved a fairly impressive

R2 statistic of 97%, which provides justification for the use of a normal

model, Buro achieved this only by separating the game into ‘game phases’

(according to the number of moves that had been played). No indication is

given about the effectiveness of this approach on other games, or how the

‘game phases’ might be determined in games other than Othello, of which

the great majority have a variable number of moves.

1.1.6 SSS*

This review of non-selective search techniques would not be complete without

some attention being given to SSS*, an interesting although rather compli-

cated algorithm due to Stockman [81]. Although not very clear from Stock-

man’s original description of the algorithm, it prunes nodes in a manner

which is basically analogous to that of alpha-beta. Rather than doing this in

a left to right manner, it keeps an ordered list of the nodes under investiga-

tion and so has a greater potential to prune away nodes. The nature of this

similarity was first pointed out by Kumar and Kanal [48] some years after

Stockman’s initial paper.

What was clear was the correctness of SSS* — meaning that it deduces

the same value as alpha-beta pruning or full-width search — and the fact
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that whilst alpha-beta looks at nodes pruned by SSS*, the converse is not

true. In the light of this it may therefore come as a surprise to learn that

SSS* has never been widely implemented by programmers of actual game-

playing programs. The reason for this is that the performance gains are at the

expense of a large overhead in storage space and bookkeeping costs. Roizen

and Pearl [68] proved the two algorithms to be asymptotically equivalent,

and reported the ratio of their average complexities for their experiments

to be small3. The intermediate storage requirement of bd/2 nodes therefore

renders the original SSS* algorithm greatly inferior to alpha-beta for practical

purposes. However, work on understanding SSS* has continued [21, 34, 51],

and the investigation of low intermediate storage versions of the original SSS*

algorithm remains an active area of research [19, 66].

1.2 Selective Search Methods

All human games players of any skill have an ability to perform selective

search. Indeed, the two concepts are virtually synonymous. If asked to

explain his thought processes, a human player might begin ‘I am investigating

what happens if I make move X...’. When asked why that particular move,

his reply is likely to amount to that fact that he thought it likely to be a good

move. In his discussion of type B search strategies, Shannon [76] proposes a

simple means of selection akin to a human’s use of prior information about

the likely merits of the moves available. He suggests ‘a function h(P, M),

3less than 3
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to decide whether a move M in position P is worth exploring’, and suggests

how such a function might be arrived at for the game of Chess.

This approach to selectivity in searching is a very interesting one, and it is

a remarkably underinvestigated area of research. Knuth and Moore mention

the idea as an alternative to a fixed-depth cut-off of alpha beta pruning [44],

crediting it to R. W. Floyd, although no publication is cited. One possible

reason why it has been subject to so little attention4 is reluctance to work

on a system that requires an extra level of domain-specific approximations

(move- as well as position-evaluation functions).

We now review the most important methods of selective game tree search.

The common aim of all of these methods is to concentrate the search effort

upon those branches of the game tree which it is most ‘profitable’ to consider.

To be useful the performance gained from the increased relevance of the nodes

examined has to outweigh the performance lost from what we shall refer to as

the meta-calculation costs, that is, the extra computational burden associated

with the selective control mechanism.

1.2.1 Best First Minimax

This technique can be traced back to 1969 when it was mentioned by Nils-

son [59] as a special case of the AO* search algorithm. It was rediscovered

by Korf in 1987, who initially rejected it on grounds of exponential memory

usage, but later began to study its performance on one-player games [46]. It

4I am not aware of any research published on this topic.

19



is based upon what Korf refers to as the principal variation of a game tree.

This is a path from root down to a leaf every node of which has the same

minimax backed-up score. It is a trivial consequence of mimimax backing-up

that at least one such path always exists.

The only nodes searched by the best first minimax algorithm are leaf

nodes of principal variations. The rationale behind this is that these are the

leaves which are most likely to influence the score at root. Korf and Chicker-

ing [47] suggest that search be terminated and a move made when the depth

of the node being searched exceeds some parameter, the maximum search

depth. When making a performance comparison with alpha-beta search, a

loose analogy is made between this parameter and the fixed depth cutoff

applicable to alpha-beta.

The major drawback of this method is that the benefit achieved by the

selectivity is overly dependent upon the accuracy of the position evaluation

function. Some appreciation of this may be gained by the observation that

best first minimax can be permanently deterred from searching a branch if

it is given a very unpromising evaluation. In an extreme case, a branch may

remain unexplored beyond depth one, however great the maximum search

depth parameter. In an effort to correct this behaviour Korf and Chickering

have formulated a hybrid algorithm, termed best-first extension search, which

initially carries out alpha-beta search to some fixed depth and then spends the

remaining time growing the tree by using best first minimax. The resulting

algorithm, whilst somewhat ad hoc, outperforms both pure alpha-beta and
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pure best first minimax, so may be indicative of the improvements to both

which are required.

1.2.2 Conspiracy Numbers

Conspiracy number search is an interesting selective search technique origi-

nally devised by McAllester [50]. The version described below is influenced

by a later paper of Shaeffer [74]. Fundamental to the algorithm is the notion

of a conspiracy. This is a set of leaves of a game tree, which, if they were all

to change their evaluations in a coordinated fashion, could result in changing

the value of the root. Nodes P & Q in Figure 6 overleaf, for example, make

up a conspiracy since if the scores of both of these nodes were changed to 5

or more, then the value of the root node would be increased.

Nodes T & U are another example of a conspiracy. If they were both to

take on a value of 3 or less, then the score of root would be decreased. The

conspiracy number of a tree is defined as the minimum size — i.e. number

of nodes — of any conspiracy of the tree. The above tree therefore has

conspiracy number of 1, since the single node R is a conspiracy.

The conspiracy numbers algorithm aims to search nodes in a way that

increases the conspiracy number of the search information as quickly as pos-

sible, by targeting the nodes involved in the smallest conspiracies. The jus-

tification for this is that it concentrates search on those parts of the search

information which have the greatest influence upon the score of the root node,

and so are in some sense the most important to search. The need to carry out
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Figure 6: A Graph with Conspiracy Number 1

deep searches of the game tree stems from the imperfection of the evaluation

function, and so it is desirable to base a choice of moves upon a tree with

a large conspiracy number, since this is to a greater degree ‘insulated’ from

the effects of inaccurate node evaluation function.

1.2.3 B*

An early and important development in the history of non-selective search

was Berliner’s [12] B* tree search algorithm, published in 1979. The existing
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algorithm with which it had most in common was the ‘bandwidth’ algorithm

devised by Harris [33]. Both of these early selective search algorithms arose

from an attempt to overcome the horizon effect. Berliner’s key idea, which

he had in 1972 (see [16]), was to score a node not with one, but with two

scalars. The use of an upper and lower bound on a node’s score allows some

assessment to be made of the stability of that node’s evaluation, and hence

its relative importance as a subject of further search.

As search progresses, the two bounds on a node’s score gradually converge.

Eventually, the lower bound of one move from root is at least as great as the

upper bound of all the other possible moves. At this point it becomes possible

to conclude — if the bounds are correct — that no further search is required

and a best move has been found, even if its exact score has not yet been

established. The B* algorithm chooses between the following two strategies:

1. PROVE BEST, which aims to raise the lower bound of the move with

the greatest upper bound.

2. DISPROVE REST, which aims to lower the upper bound of one of the

other moves.

In practice, the B* algorithm has not found widespread application. The

main reason for this is the acknowledged difficulty of deducing functions to

generate reliable upper and lower bounds. A later revision of it by Palay [60]

deserves mention as a milestone in the history of game tree search; this

was the first game-playing algorithm to score each node with a (uniform)

23



probability distribution. In his paper on B*, in which he makes a slight

improvement upon Berliner’s original formulation, Palay concludes with an

insight that was to lead to his later work on a more advanced probabilistic

adaptation to the original B* algorithm.

“It seems quite clear that humans maintain additional informa-

tion about a node in a search other than one or two values.”

1.2.4 PSVB*

Under Berliner’s guidance, and building upon B* search, Palay went on to

deduce the PSB* [14] and PSVB* [61, 62] algorithms, which score each leaf

node with a continuous probability distribution. These are backed up using

the probabilistic equivalent of minimax:

For MAX nodes : P [Parent ≤ x] =
∏
i

P [Child i ≤ x]

For MIN nodes : P [Parent ≥ x] =
∏
i

P [Child i ≥ x]

The distributions thus given to top level moves are used in an analo-

gous fashion to the upper and lower bounds of the original B* algorithm.

The PSB* algorithm attempts to select a move which ‘dominates’ the others

available with a certain probability. In the PSVB* algorithm, a verification

stage was added, in which the opponent’s replies to it are examined to estab-

lish whether it is indeed the best move. The motivation for the emphasis on

finding ‘the best’ move stems from the analogy with B* and does not appear
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to have been examined by Palay in his otherwise groundbreaking approach

to selective search.

1.2.5 Probabilistic B*

Recently, Berliner and McConnell [16] have built upon the work of Palay to

deduce an algorithm that they term ‘probability based B*’. In their algo-

rithm, each node is scored with the following triple: (optimistic, best guess,

pessimistic) and with the probability distribution optprob. The best guess

value of a leaf node is the result of a standard fixed depth alpha-beta search.

To derive the optimistic values a similar search is carried out in which the

opponent’s first move is a forced pass. The pessimistic values are derived

by the same process, since one player’s optimistic value for a node is his

opponent’s pessimistic value. This procedure has thus overcome the main

obstacle to B*’s successful implementation.

Nevertheless, the probabilistic B* algorithm still leaves certain vital the-

oretical questions unaddressed. For example, on the most fundamental issue

of all, how to select the next node to expand, there is little by way of formal

justification. One is, however, forced to admire the authors for their candour

about this:

“The expression that computes TargetVal is (optimistic(2ndBest)

+ best guess(Best))/2. We have no theory for this expression, but

it seems to do an excellent job . . . ”
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1.2.6 MGSS*

Russell and Wefald tackled the problem of how to perform a selective search

with a new rigour. They explain it as a problem of ‘constrained meta-

reasoning’ [71], of reasoning about where to search under a time constraint.

Their perspective was more theoretical than that of previous selective search

authors, discussing the origins of their ideas to an impressive degree of gen-

erality. They observe that it is (theoretically) desirable to have a meta-

meta-reasoning policy to control the actions of the meta-reasoning policy,

and so on. Their conclusion is that, for the general case, the best that can be

achieved in practice is a policy which is optimal within a restricted class of

policies, which they term limited rationality. Their (at times, almost philo-

sophical) text [72] is recommended to the reader who is interested in this

problem. As we shall discuss further in Section 6.1 this dilemma cannot be

addressed directly by classical dynamic stochastic control.

The approach taken by Russell and Wefald is to break down the meta-

calculation into manageably small steps. To decide which of these should

be carried out, the ‘meta-reasoning’ level (i.e. search control policy) esti-

mates the value of carrying out each search step, and selects the one with

the greatest expected value. For the sake of tractability, Russell and We-

fald [70] assume a search step to be the expansion of a single node of the

search information. They limit the control policies considered, thus ensuring

the tractability of the decision problem, with the help of the following two

assumptions:

26



Meta-greedy Assumption: This assumes that the meta-meta-reasoning

will be carried out by a one-step lookahead policy. Since maximising over all

possible sequences of computational steps is likely to be infeasible in practice,

the maximisation is instead carried out over all possible single computational

steps. This is an approximation since it disregards how the computational

steps chosen may influence the availability and utility of future computational

steps 5.

Single-step Assumption: This allows the value of searching to be

efficiently approximated. It evaluates the benefit gained from expanding a

node as if no further searches will be carried out. It results in the following

formula for V (Sj), the value of expanding node j:

V (Sj) = Value of Best Move available after Sj − Value of current Best Move

The MGSS* algorithm makes both of these assumptions. The idea behind it

is to expand at every stage the node with the greatest ‘utility’. The utility

of an expansion is simply its expected value with a correction to take into

account the time cost:

U(Sj) = E[V (Sj)] − TC(Sj)

5Russell and Wefald [70] point out that if no assumption is made about how the com-

putational steps are scored — such as the single-step assumption — then the Meta-greedy

assumption need not represent a simplification, since — in theory, if not in practice — the

computational steps could be scored so as to take into account their interactions with all

possible future computational steps.
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The leaves are scored with normal probability distributions. Their mean

and a standard deviation are allocated by a position evaluation function

trained on a large sample of positions so as to correspond accurately to

the change in score when the leaf is further evaluated. Russell and Wefald

comment about the assumption of normality that they found some evidence

of systematic error, and so suggest that a high performance program might

benefit from use of a finite mixture of normal distributions.

1.2.7 BP

The BP game-playing algorithm is a recent method of selective search, which

has achieved very promising results against alpha-beta opponents [80]. The

recent paper of Baum and Smith [6] contains the following statement about

selective game tree search:

“Our approach of stating a Bayesian model of uncertainty, de-

scribing how we estimate utility of expanding given trees within

this model, and giving a near linear time algorithm expanding

high utility trees can be seen as formalizing this line of research.”

This is quite a claim. The BP algorithm has much in common with

MGSS*, and in light of this, and the acknowledged influence of Russell and

Wefald on its development, we now look at how it differs from MGSS*.

The major operational difference between the two algorithms is that of

complexity. While the MGSS* algorithm is O(n
3
2 ) in the number of nodes
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of the search tree6, the BP algorithm requires O(n log n). This important

saving is achieved at the expense of selectivity by expanding a set of several

leaves (called a “gulp”) at a time, rather than expanding them individually.

This reduces the number of separate control decisions and the calculations

necessary to percolate back up to the top of the tree the new information

found by the node expansions.

The BP model of utility has much in common with that of the MGSS*

algorithm, but is rather more advanced. Denoting by S() the current score,

and S ′() the score after all the leaves of the tree have been expanded, the

expected utility with respect to move i, Qi, is defined as follows:

Qi = E[S ′(Best move)] − S(Move i)

We observe that for the move i∗ which is the current best move, Qi∗ is a

measure of the utility to be gained from expanding all the leaves. Baum and

Smith argue that a search which decreases this is useful, since it indicates that

this brings closer the point when searching can stop, having “extracted most

of the utility in the tree”. Conversely, if it increases, then this heralds the

prospect of gains with the next expansion, and so such leaves are useful for

the point of view of extracting utility from the tree. The measure of relevance

of a leaf that they use is therefore defined to be the expected absolute length

of step in Qi∗ , referred to as Q Step Size, QSS.

6This estimation is due to Baum and Smith [6].
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The BP algorithm proceeds by expanding those leaves with the highest

QSS all in one go (gulp), and then evaluating the consequences. The per-

formance of BP is strongly dependent upon the ’gulp size’ parameter, which

fixes the proportion of leaves to expand each time. The major advantage of

the use of QSS as a measure of utility over Russell and Wefald’s suggestion

is that it caters for interactions (conspiracies) between the leaves.

Another advance on MGSS* is that BP uses discrete probability distribu-

tions to score the nodes. By making an appropriate choice of masspoints, this

allows for essentially unrestricted modelling of distributions. The scores are

percolated up the tree with the formulae mentioned in Subsection 1.2.4 and

first applied to game-tree search by Palay. Baum and Smith [6] report the

results of an interesting experiment into the significance of this. In a series of

Othello games between two otherwise identical alpha-beta programs with an

evaluation function that returned a probability distribution, the one which

used probabilistic percolation was shown to beat the one which treated the

expectation of the value returned as a static score and then used standard

minimax.

1.3 Statistical Models

A game is completely determined by a set of rules relating to the board, the

pieces and so on. These define the legal moves from every state, and also

govern the evaluation of terminal game tree nodes by defining how games

are scored. The game tree can be calculated from these rules. In this work,
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I have avoided any study of real games played for amusement by humans,

since, even if the rules of the game are very simple, such games tend to have

complicated game trees7.

Instead we concentrate on artificially created games, the rules of which

refer directly to the game tree; there being no actual ‘game’ or ‘pieces’, but

just the game tree itself. The complications of real games confuse the com-

parison of search algorithms, and lean heavily towards empirical as opposed

to theoretical justification. Many evaluation functions have been the subject

of extensive research and, for popular games at least, are of not insignificant

commercial value. Authors are therefore understandably reluctant to pub-

lish them, a step which is necessary if proper comparisons are to be made

between different search algorithms.

Even within one domain, empirical evidence about the efficacy of search

methods must be interpreted with care, since the strength of any game-

playing program can be increased by countless adaptations useful to that

particular game (opening books and endgame databases being perhaps the

two most universal). These are of themselves of great statistical interest, but

are not directly relevant to searching, and so are outside the scope of this

text.

7Some would argue that for a game to be of interest to humans, it must have both of

these properties. The game of Go is the example par excellence of this duality.
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1.4 Summary

The mainstream of game tree searching has deviated surprisingly little from

the non-selective paradigm first suggested by Shannon in 1950. The discov-

ery of the alpha-beta pruning technique described in Subsection 1.1.1 may

have been the earliest refinement to minimax search, and is certainly the

most important. Iteratively deepened alpha-beta search is currently almost

ubiquitous among the top game-playing programs. A myriad of other refine-

ments and new techniques have been suggested to search game trees, few of

which seem to have found broad acceptance. Almost invariably, empirical

work done supporting each new technique has shown it is superior in some

way to previously described methods. However, the results are typically lim-

ited to one or maybe two different games. More seriously still, there has,

typically, been very little done by way of derivation or other explanation of

the algorithms’ origins, other than in the broadest terms. Although it is

understandable that research has been empirically driven to such an extent,

the lack of a theoretical basis to much of the work that has been carried

out is most unfortunate, since such studies can give only scant indication of

the wider applicability of the methods presented, and provide no basis for a

wider theory of game tree search.

Of all the refinements so far suggested to improve alpha-beta, the Prob-

cut method described in Subsection 1.1.5 is arguably the most successful. It

presents an interesting halfway house between standard ‘brute force’ tech-

niques and real selective searching. It is instructive to consider the similar-
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ities between Probcut and the latest methods of selective search. They all

carry out selection based upon a probabilistically derived (‘trained’) eval-

uation function. Probcut has much less refined selectivity but because of

this is much faster than proper selective algorithms. Probcut is only applied

below a certain depth, and so is ‘bolted-on’ to a standard full-width search

tree. In this way it is similar to the best-first extension search described

in Subsection 1.2.1. The general finding that the performance of selective

search algorithms can be improved by prepending full-width search of a rela-

tively small depth is intuitively reasonable, since if it is clear from the outset

of searching that whatever search reveals, a particular set of moves is very

likely to be worthy of investigation, then the most effective way to search

them will be in a fast (i.e. nonselective) manner. Put another way, selective

searching is only an advantage for nodes where there is doubt over their rel-

evance. Nodes which are very close to root therefore do not merit selective

searching, since it is a priori very likely that they will be worthy of search.

Shannon [76] himself admitted that the nonselective search strategy out-

lined in his seminal paper has ‘certain basic weaknesses’, which is still the

case, in spite all the various refinements suggested. With the advance of com-

puting technology, old constraints on memory and C.P.U. usage are receding

somewhat in importance, and so sheer speed alone is less important than it

was as a criterion for an algorithm’s performance. The implications of this

are that more work must be done on the theoretical underpinnings of game-

playing algorithms. This realisation no doubt goes part way to explain the
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increased attention being paid to the topic of selective search. The authors

of the MGSS* and BP algorithms deserve special mention for their success

at addressing the greater theoretical challenges posed by selective search al-

gorithms. Whilst both algorithms, inevitably, resort to some simplification,

it is commendable that they explain and explicitly state their assumptions.

This thesis tackles the problem of game tree search by drawing upon the

methods of dynamic stochastic control to apply a new rigour to the area

of game tree searching. It is therefore based upon simplified mathematical

models rather than real games, and so presents theoretical rather than em-

pirical results. Whilst this is a disappointment in the sense that the results

derived are of less immediate practical use, it is a necessary price to pay for

the increased generality of the results provided hereafter. The primary goal

of this thesis is to inspire a more systematic study of game-playing and game

tree search by both statisticians and artificial intelligence experts alike.
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2 Markov Chains

For a fully satisfactory model of a game being played by two agents, the

statespace must be rich enough to represent not merely the state of the

game8, but also the amount of time left and a representation of the ‘mind’

— be it human or silicon — of each of the two agents (i.e. which portion

of the game tree they have investigated, and how they have evaluated it).

Human gameplayers have comparatively little difficulty taking into account

their opponent’s ‘state of mind’. Bluffs, trick plays and psychological ploys

are common currency among human game players, as is playing on the op-

ponent’s weaknesses. All these are strategems which involve not merely the

state of the game itself, but also inferred knowledge about the opponent’s

state of mind.

When in a position which it has already established to be a game-theoretic

draw, Schaeffer’s draughts program, Chinook, chooses the line of play it

estimates to be the most difficult for its opponent [75], so as to maximise

its chance of winning through a blunder on its opponent’s part — an idea

he first suggested in [74]. This is a very primitive step towards the goal of

properly modelling the opponent’s deliberations, but is unmistakably a step

in that direction.

As far as I am aware, no work has yet been published about a game-

playing program, either actual or virtual, which involves modelling its oppo-

8typically the board position and whose move it is
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nent’s model9. Such meta-modelling would seem to lie beyond the realms of

what it is currently useful to implement in a game-playing program. However,

its inclusion in a program would have useful consequences, such as allowing

the program to bluff and to exploit its opponent’s known weaknesses. It is

therefore my confident prediction that its importance will become apparent

as computing power increases, and a point will be reached at which its im-

plementation becomes desirable. This view is broadly supported by Berliner,

Goetsch, Campbell and Ebeling [15] who conclude (for the game of Chess)

that as computing power increases, so does the need to deploy it with greater

selectivity.

Note that even a meta-model is an approximation. In fact it is impossible

to derive a completely satisfactory model of the state of the game, because of

the need to have a full model of the opponent’s state of mind; since we must

assume that the opponent is in turn is modelling our state of mind, we need

to model his model of our model, leading to an infinite recursion. There is

an obvious parallel here with Russell and Wefald’s comments about how the

need to optimally control meta-calculations incurs meta-meta-calculations,

and so on. Their response to this recursive dilemma was to adopt the meta-

greedy assumption, which requires the meta-meta-calculations to be of a

particularly simple nature. Once this issue eventually becomes relevant to

the playing strength of programs, a compromise of this kind seems likely to

9The closest reference I have found to such an idea is Korf’s [45] study of the alpha-beta

technique for players who use different evaluation functions.
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be an adequate solution for many games10.

2.1 Modelling Game Trees

We now consider the essential properties of a game tree. For the purposes of

developing a game-independent model of the game-playing process, a flexible

if simple mathematical model is to be preferred to a carefully carried out

empirical study of some specific game or games. In choosing a model, a

balance must be struck between simplicity on the one hand and descriptive

power on the other.

As a first concession to simplicity, we assume the game tree to be, in

fact a proper tree, as opposed to a DAG (directed acyclic graph). This

is a standard assumption. Various authors have achieved minor speed-ups

in their domain specific game-playing programs by the incorporation of a

‘transposition table’11, capitalising upon the fact that certain sequences of

moves can be interchanged and still lead to the same position. Although no

systematic study of this has yet been carried out, it seems likely that this

is a second order consideration the importance of which does not justify its

inclusion in the model at this stage.

The essential property of game trees, which underpins all search algo-

10As programs become more advanced, it will be interesting to see how the importance

of such meta-modelling will vary depending upon the game involved. It seems likely to be

of greatest importance for games of imperfect information, such as Bridge or Scrabble.

11A hash table of previously searched positions.
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rithms, is that there is a correlation between evaluations of nodes at different

points on the tree. Specifically, a node with a high score is likely to have, by

and large, descendants which also have high scores. This is fundamental if

meaningful information is to be inferred from partially explored game trees.

One simple method in which a tree with this property may be defined

is by directly relating the scores of the parents and the children. Two im-

portant ways in which this can be done are deducing the parents’ scores

from those of their children (‘upward percolation’), or generating the scores

of the child nodes from the score of their parents (‘downward percolation’).

The former approach is, in one sense, the most natural, since it reflects how

game theoretic values are actually defined. However, the consideration of fu-

ture searches requires analysis of the possible children given the parent node,

rather than the other way round, so this is not a convenient mathematical

formulation to analyse12. Accordingly, most of the models we consider will

assume downward percolation of node scores. We shall use a simple additive

error structure: the difference between a node’s score and its child’s score is

a random variable of known expectation.

12Some very rudimentary models with upward percolation of scores have been con-

structed, to analyse the minimax backing-up procedure. This approach was first applied

by Nau [55, 54, 56, 57], and subsequently used by Pearl [63, 64] and Beal [7, 8].
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2.2 A One-player Search Model

A one-player model allows for very substantial simplifications on the general

framework set out above, since it avoids the difficult issue of modelling the

opponent. The state is made up of the game tree, G, the remaining search

time, τ , and the subtree of G which has been searched, termed the search

information, L. Since G\L is unknown we exclude it from the state. The

control decision to be made is a choice between moving and increasing the

search information by spending one unit of search time to expand a leaf of

the information.

Consider a one-player game in which on h occasions, a choice must be

made between two alternative moves. With the added condition that each

attainable position may be reached by a unique sequence of moves, the cor-

responding game tree is a binary tree of height h. Each one of the 2h possible

different terminal positions has a score associated with it. The player’s goal

is to terminate the game at a node with as great a score as possible.

At the outset, the only score that is known to the player is the score at

root, which we assume without loss of generality to be 0. Upon making a

move, the player becomes aware of the score associated with the node at

which they arrive. The player has a limited amount of time, τ , to spend

conducting an exploratory search of the game tree. The only nodes which

may be searched are daughters of a node the value of which is already known.

Therefore, the actions available are making a move and expanding a leaf of

the search information.
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The effects of making a move are shown below. Making a move rules out

half of the end positions which are currently possible, while moving closer to

the other half. It therefore corresponds to discarding half of the game tree,

while the root of the remaining half becomes the new overall root.

Figure 7: Making a Move

The distribution of scores among the nodes of the game tree is random,

but the nature of the uncertainty is known a priori. There are in fact game-

specific patterns of correlations between node scores at different heights –

as exploited in the game of Othello by the Probcut model of Section 1.1.5.

However, at this point we make the simplifying assumption that the game tree

is a Markov field13. Specifically, the model assumes that the score associated

with a parent node is always the mean of its two daughters, so one is better

by a random variable, Y , and one is worse by the same amount. Since this

is a one player game, there is an optimal policy amongst the class of non-

randomised policies. In our discussion of one-player games we shall therefore

13That is, conditional upon knowledge of the score associated with its parent, a node’s

score is independent of the scores of any of its other ancestors.
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only consider deterministic policies from now on, so in ensuing analyses of

one-player games, any policies mentioned may be assumed non-randomised.

We now make another observation about the optimal policy. Let us define

the set of policies, S, to be those which only ever make a move down the game

tree if it is part of an uninterrupted sequence of moves to an unsearched node

or to the end of the tree. The below result implies that there is an optimum

policy in S.

Theorem 2.1 For every policy, π /∈ S, there is a policy π′ ∈ S which obtains

the same payoff.

Proof: Consider a policy π /∈ S. There must therefore be states in which

it performs actions {m1, . . . mn, s} where m1, . . . mn are a sequence of

move actions that do not reach an unsearched node, and s is the immediately

subsequent search action. Define π′ to mimic π except when π performs such

a sequence. When this occurs, let π′ take actions {s, m1, . . . mn}. Since

the action sequence {m1, . . . mn} does not move to an unsearched node, it

yields no information, so policy π′, which obtains the same payoff as π, is

admissible.

This result is in line with intuition: since searching reveals information

without restricting future choices whilst moving to an already searched node

does exactly the opposite, it is to be expected that the optimal policy will

search first and move later. The case of moving to an unsearched node is

different, since it reveals that node’s score and so makes it cheaper to search

that node’s descendants.
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Policies in S never move down the tree unless as part of a sequence of

moves that terminates either at the bottom of the tree or at an unsearched

node. That is, they take an action from the following set: {Move beyond i,

Expand i, Move to e and terminate}, where i is a leaf of the search informa-

tion, and e is a leaf of the search information with height 0.

The conditional independence of a node’s score given the score of its

parent means that the scores of the leaves of the search information comprise

a sufficient statistic for inference of the unknown values. The leaves are

therefore the only nodes of the search information which are relevant to

future search. Hence, the tree of search information may be represented by a

vector of leaves. The statespace may therefore be summarised by the search

time left, τ , and the leaves of the search information, L. Suppose the game

starts at the root of a binary tree which has height h. We shall address the

problem of how best to spend a number τ ≤ h units of search time.

As demonstrated above, for the purposes of deducing optimal policy the

search information may be summarised by its leaves, so, if it has N leaves,

then it may be written (L1 . . . LN ) ≡ L. A leaf i of height hi and score vi

shall be denoted Li = (hi, vi). Every nonterminal node Li has two daughters,

which we denote L(i,1) and L(i,2). Since they are one level further down the

tree:

h(i,1) = h(i,2) = hi − 1

Each node’s Yi value is an independent and identically distributed symmetric

random variable. We shall use κ to denote E[|Yi|], the expected difference
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between a node’s score and those of its daughters. The scores of L(i,1) and

L(i,2) satisfy the following:

v(i,1) = vi + Yi v(i,2) = vi − Yi

Define VMi
(L, τ) to be the value of the game (L, τ) subject to the con-

straint that the next action taken will be to move beyond leaf Li, or, if Li is

a terminal node, to terminate:

VMi
(L, τ) =




E[V (L(i,1), τ)] | hi > 0

vi | hi = 0

Further define VSi
(L, τ), for τ > 0, the value of the game (L, τ) subject

to the constraint that the next action taken will be to search beyond leaf Li,

or, if Li is a terminal node, to discard a unit of time:

VSi
(L, τ) =




E[V (L1 . . . Li−1, L(i,1), L(i,2), Li+1 . . . LN , τ − 1)] | hi > 0

E[V (L, τ − 1)] | hi = 0

2.2.1 Optimal Policy for τ ≤ h

Lemmas 2.2, 2.3 and 2.4 all use the following induction hypothesis. The last

of these will show that if it is true for τ = N , then it is true for τ = N + 1.

We first note that it is true for τ = 0.

V (L, τ) ≤ max
j

{vj} + τκ (1)

Lemma 2.2 If inequality (1) holds for τ = N , then for any i:

VSi
(L, N) ≤ max

j
{vj} + Nκ (2)
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Proof: For any i:

VSi
(L, N + 1) = E

[
V (L1 . . . Li−1, L(i,1), L(i,2), Li+1, . . . LN , N)

]

≤ E

[
max

j∈{1...i−1,(i,1),(i,2),i+1...N}
{vj}

]
+ Nκ from (1)

≤ E

[
max

{
max

j∈{v(i,1),v(i,2)}
{vj}, max

j �=i
{vj}

}]
+ Nκ

≤ E
[
max

{
vi + Y, vi − Y, max

j �=i
{vj}

}]
+ Nκ

≤ E
[
max

{
vi + |Y |, max

j �=i
{vj}

}]
+ Nκ

≤ max
j

{vj} + (N + 1)κ since E[|Y|] = κ

Lemma 2.3 If inequality (1) holds for τ = N , then for any i:

VMi
(L, N + 1) ≤ max

j
{vj} + (N + 1)κ (3)

Proof: We prove this by induction on H , the number of search units required

to completely explore the search information. The lemma holds if H = 0,

since VMi
(L, N + 1) = maxj{vj}. So, for the remaining cases where H > 0,
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for any i:

VMi
(L, N + 1) = E[V (L(i,1), N + 1)]

= E[V ((h(i,1), v(i,1)), N + 1)]

We observe that the search information, L, only contains a single leaf and

so the node that decides the terminal payoff must be a direct descendant of

the node L(i,1) = (h(i,1), v(i,1)). The additive structure of the tree therefore

implies that V (L) is linear in v(i,1). Hence:

VMi
(L, N + 1) = V ((h(i,1), E[v(i,1)]), N + 1)

= V ((hi − 1, vi), N + 1)

= max{VM1((hi − 1, vi), N + 1), VS1((hi − 1, vi), N + 1)}
≤ max{VM1((hi − 1, vi), N + 1), vi + (N + 1)κ} from (2)

The result is proved with the observation that since the search information

(hi − 1, vi) has a lower H value than L, equation (3) implies by induction on

H :

VMi
((hi − 1, vi), N + 1) ≤ vi + (N + 1)κ

Lemma 2.4

∀τ : V (L, τ) ≤ max
j

{vj} + τκ

Proof: Lemmas 2.2 and 2.3 show that if (1) is true for τ = N , then (2) and

(3) also hold, so

max
{
max

i
{VMi

(L, N + 1)}, max
i

{VSi
(L, N + 1)}

}
≤ max

j
{vj} + (N + 1)κ
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The optimality equation for V is:

V (L, N + 1) = max
{
max

i
{VMi

(L, N + 1)}, max
i

{VSi
(L, N + 1)}

}

Combining these we see if that inequality (1) is true for τ = N then this

implies that V (L, N + 1) ≤ max
j

{vj} + (N + 1)κ, which is inequality (1) for

τ = N + 1 so the result is proved by induction on τ .

Theorem 2.5 For τ ≤ h, the optimal payoff is τκ. Policy π∗, defined below,

achieves this payoff and so is therefore optimal.

Policy π∗ is to pick a leaf Li which satisfies vi = max
1≤j≤N

{vj} and

if τ > 0 then Search it,
if τ = 0 and hi > 0 then Move to a random daughter of it,

if τ = 0 and hi = 0 then move to it.

Proof: The payoff from playing policy π∗, Vπ∗ , from a state where mini{hi} ≥ τ

is given by:

Vπ∗(L, τ) = max
i

{vi} + τκ

The value of the game played under the optimum policy, V , is an upper

bound on the value of the game played under any other policy, so combining

this with Lemma 2.4, we see:

Vπ∗(L, τ) ≤ V (L, τ) ≤ max
i

{vi} + τκ = Vπ∗(L, τ)
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2.2.2 Optimal Policy for τ > h

The optimal policy for τ > h depends upon the properties of the distribution

P (). At one extreme, if Y takes only the values -1 and 1, the paths of the

game tree represent all possible courses of a 1-dimensional random walk of

length h. In this case, the set of terminal node values is completely deter-

mined, and τ = h is sufficient time to discover the path to the best one, so

any extra search time is superfluous.

Conversely, for any P () with support along the whole real line, all 2h

terminal nodes must be searched before it can be definitely established which

one of them has the greatest score, so search time only becomes superfluous

for τ ≥ 2h − 1. We conclude our study of this model with a short theoretical

section in which we shall prove a restriction on the optimal policy for τ > h

and outline how it may be tackled as an optimal stopping problem.

Recall our earlier definition of S, as the set of policies which only ever

make a move down the game tree if it is part of a sequence of moves to an

unsearched node or to the end of the tree. Define S∗ ∈ S to be set of such

policies which never move with τ > 0.

Lemma 2.6 There is an optimal policy in S∗.

Proof: We show that for every policy π′ ∈ S\S∗, there is a policy π∗ ∈ S∗

which obtains the same payoff. Once again we use induction on H , the

number of time units required to search all of the search information. The

result is trivially true for states in which H=0, so we now consider cases in
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which H > 0.

Firstly, let π∗ mimic π′ until the first state in which π′ suggests a move

action with τ > 0 . Since π′ ∈ S, such an action must be the first of

a consecutive sequence which leads either to the end of the game or to an

unsearched node. The first of these cases is trivial; π∗ can achieve an identical

payoff by taking the same sequence of moves once it has exhausted the search

time by making random searches until τ = 0.

The remaining case is that in which τ > 0 and π′ moves to an unsearched

node, L(i,1), achieving the following payoff:

VMiπ′(L, τ) = E[Vπ′(L(i,1), τ)]

= E[Vπ′((h(i,1), v(i,1)), τ)]

= Vπ′((hi − 1, E[v(i,1)]), τ)

= Vπ′((hi − 1, vi), τ) (4)

Since L(i,1) has a lower H value than Li, the induction hypothesis tells us

that the below is true for some π′∗ ∈ S∗:

Vπ((hi − 1, vi), τ) ≤ Vπ′∗((hi − 1, vi), τ) (5)

Policy π∗ omits the move action of π′, but ignores all nodes of L except Li.

Vπ(L, τ) = Vπ((hi, vi), τ) (6)

Policy π∗ then carries out the same sequence of actions from ((hi, vi), τ) as

policy π′∗ does from ((hi − 1, vi), τ). If concludes by making a random move
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to reach the end of the game, leaving the expected payoffs of the two policies

equal.

Vπ′∗((hi − 1, vi), τ) = Vπ∗((hi, vi), τ) (7)

Policy π∗ carries out a sequence of searches, mimics π′∗ ∈ S∗ and con-

cludes with a move to an unsearched node, and is therefore also in S∗. From

(4), (5), (6) and (7):

VMiπ′(L, τ) = Vπ′((hi − 1, vi), τ)

≤ Vπ′∗((hi − 1, vi), τ)

= Vπ∗((hi − 1, vi), τ)

= Vπ∗(L, τ)

We now suggest the following conjecture as a step towards proof of the

optimal policy for τ > h.

Conjecture 2.1 For τ ≥ h, there is an optimal policy in S which is certain

to reach a state in which for some node Li, vi = maxj{vj} and τ = hi without

moving to an unsearched node.

If this is proved true, then the following result is also proved.

Corollary 2.7 For τ ≥ h, there is an optimal policy, π∗ ∈ S∗, that is, one

which never moves to an unsearched node.
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Proof: From Conjecture 2.1, there is an optimal policy in S which is certain

to reach a state in which for some node Li, vi = maxj{vj} and τ = hi, with

moving to an unsearched node Theorem 2.5 establishes the following upper

bound on the optimal payoff, obtainable from such a point:

V (L, τ) ≤ maxj{vj} + τκ

This applies to states in which for all i, hi > τ . This case is more restricted,

but the bound can be achieved by discarding all nodes other than Li and

playing optimally as described in Theorem 2.5. Since τ = hi, such a policy

searches to the very end of the tree.

Corollary 2.7 tells us that there is an optimal policy which never moves

to an unsearched node for τ = h + 1. This therefore defines the shapes

of the search information which it may be optimal to search; since it must

include an unbroken path of search from root down to a leaf, one unit of

search remains, which — assuming P () is such that it is needed — will form

a bifurcation at some point down this strand.

Once this extra unit of time has been spent, the problem is reduced to the

‘τ = h’ case, and optimal policy is established. The problem may therefore be

treated as one of optimal stopping — the ‘stopping’ being interpreted as using

up the extra unit of time to create a bifurcation of the search information.

The practical upshot of this is that the optimal policy with h + 1 units of

time, as shown overleaf, is to search down a single variation, always picking

the better daughter, until the Y value is sufficiently small. When this occurs,

it is optimal to ‘backtrack’ up the variation one level and search the sister
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Figure 8: Optimal Policy for τ = h + 1

of the last node just searched. The threshold value of Y below which Y is

deemed to be ‘sufficiently small’ is a function of the last two Y values found.

It also decreases as does the height of the tree remaining. If the bottom of

the tree is reached without the extra time unit having been used, it is optimal

to use it whatever the last two values of Y , since there is no further use for

it.
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2.3 A Fuel Control Problem

We now consider a fuel control problem inspired by the tree search game of

the previous section. As before, the game consists of moving to the bottom

of a finite tree, possibly with the aid of one or more searches. Similarly, the

reward from playing the game is the value of the leaf arrived at.

In contrast, however, to the original problem, we assume that the set

of leaf values is known. Moreover the value of each separate leaf node, i,

is f(i), which is known. The uncertainty in this game concerns the moves.

The player at root has perfect information of the game tree ahead of him,

but cannot distinguish which of the two moves available will lead to which

half of the game tree. The action ‘move’ causes the player to choose one

random half of the game tree and move there. The ‘search’ option reveals

this information to him. This is equated to the expenditure of fuel (or search

time).

Faced with a height h game tree, h time units are sufficient to achieve

the optimal result. The following policy is optimal:

1. Select a leaf node, L, which achieves the greatest reward.

2. Carry out a search to discern which move is which, and move

to the half of the tree which contains node L. Go to 2.

The optimal policy for less than h time units is more interesting. It is

useful to introduce some notation at this point. We shall define two sequences

of functions on the game tree, Vn() and V ∗
n () . Each function accords values
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to each node of the tree. We denote by pij the probability of arriving at j if

a move is made at random from i, so pi(i,1) = pi(i,2) = 1
2
.

Define V0() as follows:

V0(i) =




f(i)
∣∣∣ i is a leaf∑

j

pijV0(j)
∣∣∣ otherwise

That is to say, V0() is the harmonic extension of the f() values at the leaves.

Define V ∗
0 () with reference to V0() as follows:

V ∗
0 (i) =




f(i)
∣∣∣ i is a leaf

max
j|pij>0

{V0(j)}
∣∣∣ otherwise

Since V0() is the harmonic extension of f(), V ∗
0 () is a majorant of V0(). It is

equal to the payoff from a policy of expending one unit of time straight away,

and then making random moves thereafter. We now define the following

function V1() with respect to V ∗
0 ():

V1(i) =




f(i)
∣∣∣ i is a leaf

max


V ∗

0 (i),
∑
j

pijV1(j)




∣∣∣ otherwise

Theorem 2.8 shows that this function gives the value of the game when

one unit of time remains and the optimal policy is followed. An example of

these two functions is given overleaf in Figure 9.

The V ∗
1 () tree is now defined with respect to V1() in a similar fashion to

the way in which V ∗
0 () was defined in terms of V0(). This process is repeated,

allowing computation of Vτ () for any τ .
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Figure 9: Example V0() and V ∗
0 () Values

Theorem 2.8 The payoff from playing optimally with τ units of time is

given by Vτ+1().

Proof: If τ = 0, the only available policy is to move at random, so the result

is true since V0() is the harmonic extension of f(). We now apply induction,

assuming that it is true for τ = n. The optimality equation for Vn+1() is as
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Figure 10: Example V1() and V ∗
1 () Values

follows:

Vn+1(i) = max


V ∗

n (i),
∑
j

pijVn+1(j)




This shows it is the minimal superharmonic majorant of V ∗
n (). Hence it is

the optimality equation for optimally stopping V ∗
n .

Corollary 2.9 The function V ∗
τ () gives the optimal payoff if τ + 1 units of

fuel are available, and one of them has to be expended immediately.
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Proof: If i is a leaf, then only one payoff is possible, so the corollary is

trivially true. Otherwise:

V ∗
τ (i) = max

j|pij>0
{Vτ (j)}

For n ≥ h, the process is trivial since Vn() = Vn+1(), reflecting the fact

that no more than h search units are required to ensure an optimal choice

of moves. The problem is now solved, since the optimal action from a node

with τ time units available for search can be deduced from consideration of

the Vτ () values of that node and its children. The remaining Vn() and V ∗
n ()

functions for the example are shown in Figures 10 and 11.

Having understood this simple model, we now consider several generali-

sations. Firstly, the game tree need not be binary, indeed it need not have

a constant branching factor. Furthermore, it need not have a fixed height,

since any finite irregular tree of maximum height h, maximum branching

factor b can be modelled as a regular tree of height h, branching factor b,

simply by the addition of ‘dummy’ branches where each daughter has the

same score as the parent node.

What is more, the structure of the game need not be a tree; a DAG can be

treated in an identical fashion. This is perhaps most easily seen by observing

that any DAG may be expanded to an equivalent out-tree, by simply making

copies of the nodes which have in-degree of greater than one, as shown below.

We note that in practice it is not even necessary to perform a transformation.
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Figure 11: Example V2() and V ∗
2 () Values

We have now seen how the method developed for the binary tree case may

be applied without difficulty to any finite DAG. We now broaden the scope

of the model still further by re-interpreting the nature of the uncertainty

involved in ‘moving’ in a more general fashion. Let us replace the notion of

spending a unit of time to ‘discover which move is which’ by that of ‘expend-

ing a unit of fuel in order to control our movement’. This allows specification

of a general probability distribution over a node’s possible daughters. The
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Figure 12: Expansion of a DAG to an Equivalent Out-tree

previous model, which assumed that random movement to each of a node’s

daughters was equally likely, is thus reduced to a special case.

We are now in a position to understand the problem description as a

fuel allocation problem. The problem is defined on a DAG, with one source

node, at which some ‘particle’ begins, and one or more sink nodes, at which

it can end the game. Each sink node, i, is associated with a finite payoff,

f(i), the value of the game if the particle reaches that node. Every arc

is associated with a positive weight. We naturally require that the sum of

weights associated with the outarcs of a node be 1, unless the node is a sink,

in which case it has no outarcs, by definition.

If no fuel is expended, the particle makes a random transition, following

an outarc of the node where it currently resides with a probability equal to

the associated weight. If the player chooses to expend a unit of fuel he may

select any of the outarcs from the particle’s current position and move the

particle along it.
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If enough time units are available, it is possible to control every transition

made by the particle, directing it to reach a sink with the greatest reward,

which is of course optimal. This will be reflected in the calculation of the

Vτ () value of root.

We now consider one final generalisation — that of allowing cyclical

graphs. This causes no problem for the theoretical definition of the V ()

and V ∗() values. In practice, they become harder to calculate, since the

straightforward ‘bottom up’ recursive calculation method is no longer possi-

ble if the graph contains possible cyclical particle trajectories, owing to the

mutual dependence of the V () values of the nodes in the cycle.

In this case we resort to application of the policy improvement algorithm.

We calculate V0(), the harmonic extension of f() as before. To calculate V ∗
0 (),

the policy improvement algorithm starts with a policy which everywhere

expends a unit of fuel and then proceeds at random. It then proceeds by

iteratively decreasing E, the set of points at which it is optimal to expend

fuel. The policy of expending the fuel unit at a node in set E has a payoff

V E
0 (), defined as follows:

V E
0 (i) =




f(i)
∣∣∣ i is a sink node

max
j|pij>0

{V0(j)}
∣∣∣ i ∈ E

∑
j

pijV
E

0 (j)
∣∣∣ otherwise
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The steps of the policy improvement algorithm are:

1. Let E contain all the non-sink nodes of the graph.

2. Delete from E any nodes i such that:

∑
j

pijV
E

0 (j) > max
j|pij>0

{V0(j)}

(If there are no such nodes, go to step 4.)

3. Recalculate the V E
0 () values. The fact that the new V E

0 ()

function is a strict majorant of the old one is a consequence

of the definition of V E
0 () and the choice of points to omit

from E. Go to step 2.

4. Since this choice of E is optimal, V1() ≡ V E
0 (). Deduce the

set A1 of nodes with V1(i) = maxj{f(j)}. This set contains

points from which the optimal payoff is attainable without

further time units.

A similar method can be used to deduce VN+1() from VN(), for any N .

Examination of step 2 shows that termination occurs after a number of iter-

ations not exceeding the number of nodes. Note the criterion for removing a

point from E: ∑
j

pijV
E

0 (j) > max
j|pij>0

{V0(j)}

Since the V E
N () values are never adjusted downwards, it is never optimal

to add a node back into E once it has been removed. This, together with
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the criterion for reaching step 4, prove the assertion that the choice of E is

optimal at this point. Finally, we note that once a node is added to Ai it

need not be included in subsequent iterations. Iterations are therefore likely

to involve less and less calculation as time proceeds, since more and more

nodes have been added to Ai.

We conclude our discussion of this problem with a special case — grids

which have a translationally invariant transition structure. Define the interior

of a translationally independent lattice to be the set of points which are not

sink nodes, and which have a transition structure identical to each of their

neighbours. i.e. those more than one step away from any sink nodes, edges

or other irregularities in the lattice.

Theorem 2.10 It is optimal never to expend the last remaining unit of fuel

from a state in the interior of a translationally independent lattice.

Proof:

Let node x be a node on the interior of a translationally invariant lattice,

with neighbours denoted x+1, . . . x+n. Suppose that if no fuel is expended,

cell x+ i is reached with probability pi. Note that because x is in the interior

of the lattice, (x + i) + j = (x + j) + i, since making a move in direction i

followed by one direction j is equivalent to making these moves in the reverse

order.

VN+1(x) = max


max

i
{VN(x + i)},

n∑
j=1

pjVN+1(x + j)
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Figure 13: Calculation of V3() on a Translationally Invariant Grid

Consider the optimality equation above. We show that the second of the

terms of the maximisation dominates the first.
n∑

j=1

pjVN+1(x + j) ≥
n∑

j=1

pjVN((x + j) + i) ∀i

≥
n∑

j=1

pjVN((x + i) + j) ∀i

≥ max
i




n∑
j=1

pjVN((x + i) + j)




≥ max
i

{VN(x + i)}
Specifically, if N = 0, we observe:

n∑
j=1

pjV1(x + j) ≥ max
i

{V0(x + i)}
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This result speeds up application of the policy improvement algorithm

for cases in which some subset of the graph is a translationally invariant

lattice, as is illustrated in above. It can be understood in familiar terms.

Not expending fuel equates to making a random move, while expending fuel

entails making a decision about how to do so. For positions in which the

nearest sink or edge is more than one transition away, a random move causes

a reversible change to the node’s position, since if desired, a time unit may be

expended to move back. Therefore, for every policy which first expends fuel

and then moves randomly there is an equivalent policy which interchanges

these actions. Not only does this entail no loss, it is better in general, since

more information is available (the direction of one more random transition)

upon which to base the decision about how to move.

2.4 Summary

In the general case of the game-playing problem as we have discussed it,

strictly ‘optimal’ play is, even in theory, an unachievable concept, due to

the complications in trying to anticipate the opponent’s policy. We must

therefore study less complicated models if a strictly optimal policy is sought.

One such is the one-player game of Section 2.2. The optimal policy for

the case of τ ≤ h is fairly trivial, but considerable work had to be put

into its proof. Similarly, the results for τ > h represent the fruits of some

considerable effort, even though they stop short of actually specifying an

optimal policy, and are probably of theoretical rather than practical interest.
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The fuel control model of Section 2.3 was deduced as something of a

‘spin-off’ of investigation into the main one-player tree search model. It has

a pleasing generality, in that it goes so far beyond the binary tree case of its

parent model. I therefore believe that it may well turn out to be of practical

use without further modification, and its serendipitous discovery is further

evidence of the value of developing tree search models.
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3 OR-Tree Search

This chapter addresses a problem which we shall refer to as ‘OR-tree’ search14.

The model that we address can be viewed as an investigation into the truth

of a logical expression, L, which is a finite conjunction of logical primitives,

li. L is a logical expression iff one of the following is true:

1. L is a logical primitive.

2. L ≡ (X ∪ Y ), where X and Y are both logical expressions.

The symbol ‘∪’ represents the customary binary Boolean ‘OR’ operator,

which is associative, and so the above definition implies the following:

L ≡ l1 ∪ l2 ∪ . . . lN

For proofs, different types of logical primitive will be differentiated by nu-

merical subscripts. However, when giving examples, we shall refer to logical

primitives by capital letters, A, B, C . . . so that a numerical subscript can

be added to distinguish between logical primitives of the same type.

Sometimes it will be useful to have a label for logical expressions other

than primitives. e. g. Y ≡ (A∪B). These we shall refer to by using uppercase

letters, starting from X. Again, independent copies will be distinguished by

use of numerical subscripts.

14The reader interested in rule-based methods of theorem proving should note that this

chapter — indeed this thesis — does not contain any material of direct relevance.
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3.1 Deterministic Case

We begin our consideration of this problem by restricting our attention to

the case in which every logical primitive is a box. By box we mean a logical

primitive which, when searched, will be shown for certain to be either true

or false. The time taken to search a box may be a random variable, but

we require that the expected time required to search it, t, is known. The

probability, p, that it contains an object is also known.

We take the term ‘box’ from a classic and well-discussed case — see

Dean [22], Joyce [35], Mitten [52] and Sweat [83] amongst others — which

involves the search of a set of N boxes. In terms of the original model, pi

is the probability that box i contains an object, which is found if search is

carried out on that box. We can view L, therefore, as the statement “one or

more of the boxes l1 . . . lN contains an object”. We seek to deduce a search

policy which can determine, for sure, the truth of a general logical expression,

L, in the smallest possible expected time.

This search is termed satisficing, since it aims to find a solution which

is good enough for some specified purpose. It is to be contrasted with an

optimising search which aims to find the best solution available. In contrast

to an optimisation, satisficing search does not necessarily have a solution –

in this case search proceeds until all the possible solutions have been shown

not to meet the constraints which define what is ‘good enough’, whereupon

the search terminates unsuccessfully. If, however, a solution is found, search

may be terminated immediately.
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We shall assume for simplicity that a search of a box which contains an

object is certain to be successful, that is, an object will be found, although

this restriction will be relaxed in Section 3.7.

Search continues until an object is detected, or until all the boxes have

been unsuccessfully searched. A policy is termed optimal if it searches boxes

in such a way that it minimises the payoff, V , equal to the expected time

until termination.

In the model described above, each policy can be identified with what

Kadane and Simon [37, 77] term a strategy, that is, a permutation of the

integers from 1 to N . A strategy, A, represents the policy which searches the

boxes in the order of the integers given by A, ceasing as soon as an object is

detected or if all the boxes have been searched.

Consider an arbitrary strategy, A = {a1, a2 . . . an}. Using x to represent

the state, we denote by VA(x) the expected termination time of applying

strategy A to search the boxes. We shall use qi to denote the probability

that an object is not found when box i is searched, and pi = 1 − qi.

Hence:

VA(x) =
N∑

i=1

tai

i−1∏
j=1

qaj

We now modify A by interchanging the kth and k + 1th elements to ob-

tain A′ = {a1, a2 . . . ak−1, ak+1, ak, ak+2, . . . an}, and consider the payoff from

applying this modified strategy:
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VA′(x) =
k−1∑
i=1

tai

i−1∏
j=1

qaj
+ tak+1

k−1∏
j=1

qaj
+ qak+1

tak

k−1∏
j=1

qaj
+

N∑
i=k+2

tai

i−1∏
j=1

qaj

It is instructive to consider the expected difference in the time taken by

policies A and A′:

VA(x) − VA′(x) =
k+1∑
i=k

tai

i−1∏
j=1

qaj
− tak+1

k−1∏
j=1

qaj
− qak+1

tak

k−1∏
j=1

qaj

=
k−1∏
j=1

qaj
(tak

+ (1 − pak
)tak+1

− tak+1
− tak

(1 − pak+1
))

=
k−1∏
j=1

qaj
(pak+1

tak
− pak

tak+1
)

> 0 ⇔ pak+1

tak+1

>
pak

tak

This simple interchange argument shows that strategy A′ is an improvement

upon strategy A if the exchanged boxes, ak and ak+1, were not in decreasing

order of p
t
. If we define the reward rate, Øi = pi

ti
, of a box i, we see that the

optimal policy must therefore be to search the boxes in decreasing order of

Ø.
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3.1.1 Linear Precedence Constraints

We now suppose that some restrictions exist as to the order in which the

boxes can be searched. Specifically, we consider the case of linear precedence

constraints, as illustrated below.

Figure 14: Linear Precedence Constraints

Such a constraint structure arises if we assume that the boxes are arranged

in N stacks, so that box (i, j) is the jth box in stack i, and the searcher is

limited to searching only the uppermost unsearched box of each stack. The

goal of search, to discover whether there is an object, remains unchanged.

There are now two factors that influence the choice of box; not only the

immediate possibility of finding an object, but also the future benefit from ac-

cess to boxes below must be considered. This problem has a straightforward

solution, first shown by Mitten [52].

Let us begin by considering briefly the case in which the boxes are ar-

ranged so that the Øi decreases from the top of each stack to the bottom.
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In this case, it is possible to select the boxes in decreasing order of Øi, and

so the same payoff is possible. This is, therefore, optimal by the trivial ob-

servation that restricting the possible actions cannot possibly improve the

payoff. We now show that it is possible for any boxes problem with linear

precedence constraints to find an equivalent one with this structure.

Suppose Ø(i,j) < Ø(i,j+1). We show that this implies that boxes (i, j) and

(i, j +1) belong to the same indivisible block. By this we mean that it cannot

be optimal to immediately follow search of (i, j) by search of any box other

than (i, j + 1). To see this, we compare the payoffs of the following three

policies:

π1: Search some other box(es), k, then box (i, j), then box (i, j + 1).

π2: Search box (i, j), then some other box(es), k, then box (i, j + 1).

π3: Search box (i, j), then box (i, j + 1), then some other box(es), k.

(It is understood that the policies only search if necessary — i.e. that they

terminate if an object is found). Let us denote by pk the overall probability

that the other box(es) contain an object and by tk the expected time to

search them.

Vπ1 = tk + qkt(i,j) + qkq(i,j)t(i,j+1)

Vπ2 = t(i,j) + q(i,j)tk + qkq(i,j)t(i,j+1)

Vπ3 = t(i,j) + q(i,j)t(i,j+1) + q(i,j)q(i,j+1)tk
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Hence:

Vπ2 − Vπ1 = t(i,j) + q(i,j)tk − tk − qkt(i,j)

= pkt(i,j) − p(i,j)tk

= t(i,j)tk(Øk − Ø(i,j)) (8)

Vπ2 − Vπ3 = q(i,j)tk + qkq(i,j)t(i,j+1) − q(i,j)t(i,j+1) − q(i,j)q(i,j+1)tk

= q(i,j)(p(i,j+1)tk − pkt(i,j+1))

= q(i,j)tkt(i,j+1)(Ø(i,j+1) − Øk) (9)

Equation (8) implies that if Øk > Ø(i,j) then policy π1 achieves a lower

payoff than policy π2, while equation (9) implies that if Øk < Ø(i,j+1) then

policy π3 achieves a lower payoff than policy π2. At least one of these condi-

tions applies, since Ø(i,j+1) > Ø(i,j), and so policy π2 is therefore not optimal.

The solution then proceeds by processing the boxes, starting from the

bottom of each stack, grouping them into indivisible blocks wherever possible.

This process of grouping together separate searches into a single unit we

shall refer to as chunking. Once no more chunking can be carried out, the

indivisible blocks are said to be maximal. In this case, it is a consequence of

the criterion for chunking that the maximal indivisible blocks within a stack

must now be in order of decreasing Ø, and so the optimum policy is just to

search them in decreasing order of Ø.
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3.2 Stochastic Case

We now increase the scope of the model to cater for a more general class of

logical primitives, to allow dynamic revelation of nodes (previously referred

to as boxes) in the course of search. We assume that all nodes belong to one

of n different types, the details of which are known.

Satisficing search on an out-tree differs from more familiar tree search

models, such as shortest path search, in that the structure of nodes already

searched is of no importance in guiding further search. Apart from the set

of nodes now available for search, the only relevant result of previous search

is whether or not an object has been found. The state of an ongoing search

problem may therefore be represented by x, a vector of length n that contains

the number of nodes of each type that are currently visible.

Subsection 3.3.2 compares the values of different problems and so there

the state of a search will be represented (x,d) where d is a vector of length

n which summarises the details of each type of node.

d = (d1, d2 . . . dn) where di = (pi, ti, fi)

The definitions of pi and ti are unchanged, whilst we use fi(s) to denote

the offspring distribution of node i. This is defined as the n-dimensional prob-

ability distribution of extra nodes revealed when a type i node is searched.

We shall use familiar notation, Vπ(x,d), to refer to the expected time

taken to terminate starting from state x with nodes of type d, when policy π

is applied. In cases where d is fixed, we shall abbreviate this as Vπ(x). The
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optimal value, V (x) is given by:

V (x) = minπ{Vπ(x)}

A (non-randomised) policy π is a (deterministic) function of a state xπ
i , with

past history, Hi = (x0
π, a1,x1

π, a2 . . .xi
π), where ai ∈ {1 . . . n}. Denote

the τ + 1th action taken by π, as πτ (Hτ ). A Markov policy is a policy

which does not take the past history of states or actions into account, so

can be expressed π(xπ
i ) = ai. Since this is a one player game, there is

an optimal policy amongst the class of non-randomised Markov policies. We

shall therefore restrict our attention for the rest of this paper to these policies,

so any policy mentioned may be assumed to be both non-randomised and

Markov.

We shall expand the state space by adding the special state, 〈T〉, which

corresponds to having found an object. This must be a trapping state. The

expected time to search for an object from this state is always 0. From any

other state, action a may only be taken if there is a node of that type available

for search. In such a case, the expected time required to take action a is a

constant, ta, so the cost, c(x, a), of taking action a from state x satisfies:

E[c(x, a)] = taIx �=〈T〉

A node type is termed most rewarding if it achieves the maximum reward

rate. A node is termed most rewarding if it is of a most rewarding type. In

the exposition that follows, we use I∗ to denote the set of most rewarding

node types.
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We define an exhaustive search of type i nodes as a sequence of searches of

type i nodes, which terminates either upon finding an object or when there

are no more nodes of type i available for search, whichever happens first.

Now define a k-exhaustive search of nodes of type i as a sequence of

searches of type i nodes which terminates either as soon as it finds an object

or when there are no more nodes of type i are available, or when it has car-

ried out k searches, whichever happens first. The above defined exhaustive

search is therefore equivalent to an ∞-exhaustive search by this definition.

A simple-minded policy is defined as a policy which carries out an ex-

haustive search of the most rewarding node type(s) whenever possible.

We now explain the equivalence with tree search. Each logical primitive

corresponds to a node in the search tree. If search reveals the node to contain

an object, this is interpreted as discovering that the corresponding logical

primitive is true. We shall disregard degenerate search ‘opportunities’ —

nodes which have no probability of containing an object — and so the only

way to conclude for certain that L is false is to show that each of the Li is

false. This corresponds to the game ending when all the nodes are exhausted.

3.3 Nature of the Optimal Policy

Our analysis proceeds in three stages. In Subsection 3.3.1, we prove that the

optimal policy must be simple-minded. This establishes the optimal action

from states in which there are any most rewarding nodes available for search.

We then show how it is possible to treat an exhaustive search in a similar
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fashion to the search of a single node. The next section then uses this to

prove Theorem 3.2, which then establishes a connection between a problem

with n node types and a problem with n − 1 transformed node types.

Finally, Subsection 3.3.3 establishes that dynamic programming may be

used to solve the problem by recursive application of Theorem 3.2, prov-

ing the optimal policy to be a simple priority order rule. The structure of

this proof is identical to that of the proof by Tsitsiklis[85] for semi-Markov

bandits.

3.3.1 A Restriction on the Optimal Policy

To simplify the following theorem, we slightly modify our conception of the

game. Suppose that, rather than stopping once an object has been found,

all policies keep searching as long as any boxes are available for search. The

equivalence between the games is maintained by assuming that searches car-

ried out once an object has been discovered are made at no cost. This con-

struction is useful since it allows conditioning upon the states encountered

to be independent of whether or not an object has been found.

The state we denote as (W,X), where X has its previous meaning, and

W keeps track of whether an object has been found, assuming value 0 if an

object has been found, and value 1 if not. Hence:

E[c(W,X, a)] = Wta

Theorem 3.1 A policy which is not simple-minded cannot be optimal.
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Proof: Consider an arbitrary policy, π, which is not simple-minded.

It is shown that there exists a policy, π′, which achieves a strictly better

payoff. Define the stopping time, N < ∞, as the time at which policy π

first breaks the simple-minded criterion. (That is πN (xN) /∈ I∗, although for

some i∗ ∈ I∗, xπ
Ni∗ > 0 and so i∗ would have been a legal action in state xπ

N ).

The payoff achieved by a policy π, Vπ[x], we break into three parts. The

expected cost of actions taken from states X0 up to XN−1 is written A. The

expected cost of actions taken from the state in which policy π first misses

a chance of searching a node of type i∗, XN , until the state in which it next

takes the chance, XM , is written B. The expected cost of actions after this

point is written C. Note that the time at which policy π first takes action

i∗ again, M ≤ ∞, is a stopping time. (If policy π never does, M = ∞ and

C = 0).

Vπ[x] = E

[ ∞∑
i=0

c(W π
i ,Xπ

i , πi(X
π
i ))

]
= A + B + C

where :

A = E

[
N−1∑
i=0

c(W π
i ,Xπ

i , πi(X
π
i ))

]

B = E

[
M∑

i=N

c(W π
i ,Xπ

i , πi(X
π
i ))

]

= E

[
M−1∑
i=N

c(W π
i ,Xπ

i , πi(X
π
i )) + c(W π

M ,Xπ
M , i∗)

]

C = E


 ∞∑

i=M+1

c(W π
i ,Xπ

i , πi(X
π
i ))
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Figure 15: Alternative Policy π′

Consider a policy π′ which mimics policy π until time N , when π first

misses an opportunity to search a node of some type i∗ ∈ I∗. Policy π′ now

deviates by searching a node of type i∗. This is admissible, since N is a

stopping time. The search of a node of type i∗ may result in extra nodes of

other types being added to the state, but it cannot result in such nodes being

removed. It is therefore an admissible policy to mimic the actions taken by

policy π once more. Policy π′ does this until time M . If M < ∞, then at

this time policy π searches the node of type i∗ which π′ searched earlier, and

the two policies reconverge and play identically once more.

Denoting by x + y the state arrived at from x when a node of type i∗ is

expanded, policy π′ leads to the following series of states:

{Xπ
0 ,Xπ

1 , . . . Xπ
N ,Xπ

N + y,Xπ
N+1 + y, . . . Xπ

M−1 + y,Xπ
M+1,X

π
M+2, . . . }

The payoff achieved by policy π′ we express, as before, as the sum of three

parts: A′ is the expected cost of the first N actions, B′ of the next M − N ,

and C ′ of the remainder:
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Vπ′[x] = E

[ ∞∑
i=0

c(Xπ′
i , π′

i(X
π′
i ))

]
= A′ + B′ + C ′

Where:

A′ = E

[
N−1∑
i=0

c(W π′
i ,Xπ′

i , π′
i(X

π′
i ))

]
= A

B′ = E

[
M∑

i=N

c(W π′
i ,Xπ′

i , π′
i(X

π′
i ))

]

= E


c(W π′

i ,Xπ′
N , i∗) +

M∑
i=N+1

c(W π′
i ,Xπ′

i , π′
i(X

π′
i ))




C ′ = E


 ∞∑

i=M+1

c(W π′
i ,Xπ′

i , π′
i(X

π′
i ))


 = C

Vπ[x] − Vπ′[x] = (A + B + C) − (A′ + B′ + C ′) = B − B′

= E [[E D|πN (Xπ
N) = aN , . . . πM(Xπ

M) = aM ]]

We consider D, the difference in expected payoff of policies π and π′,

conditional upon the sequence of actions taken.
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D =
M−1∑
i=N

c(W π
i ,Xπ

i , π(Xπ
i )) + c(W π

M ,Xπ
M , i∗)

−c(W π′
N ,Xπ′

N , i∗) −
M∑

i=N+1

c(W π′
i ,Xπ′

i , πi(X
π′
i ))

=
M−1∑
i=N

W π
i ti + W π

M ti∗ − W π′
N ti∗ −

M∑
i=N+1

W π′
i−1qi∗tai−1

= pi∗
M−1∑
i=N

tai

i−1∏
j=N

qaj
+ ti∗(

M∏
j=N

qj − 1)

= ti∗


M−1∑

i=N

pi∗

ti∗
tai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




Since i∗ is a most rewarding node, pi∗
ti∗

> pi

ti
∀i /∈ I∗.

= ti∗


M−1∑

i=N

pai

tai

tai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




= ti∗


M−1∑

i=N

pai

i−1∏
j=N

qaj
+

M∏
j=N

qj − 1




> 0

We have now established that the optimal policy is simple-minded. This

is equivalent to stating that it carries out an exhaustive search for most re-

warding nodes at every opportunity. Rather than considering a single search

we now consider search of a type i node followed by an exhaustive search

for nodes of type i∗. We denote as p̂i(i
∗) the probability of finding an object

with such a chuck of search. The expected time taken to search such a chunk

79



we denote t̂i(i
∗), and let us use f̂i(i

∗) to represent the distribution of nodes

revealed. We can now use these values to enable the mathematical treatment

of this chunk of search as if it were the expansion of a single node.

3.3.2 An Equivalence Between Search Problems

This section leads to a theorem which establishes an identity between V (x,d)

and the value of a modified problem V (x′,d′) which has one less node type.

Theorem 3.2 If i∗ is a most rewarding node type then

V ((x1 . . . xi∗−1, 0, xi∗+1 . . . xN ), (d1 . . . dN))

= V ((x1 . . . xi∗−1, xi∗+1 . . . xN ), (d′
1 . . . d′

i∗−1, d
′
i∗+1 . . . d′

N))

where the transformed node types satisfy

d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗))

Proof: Denote by U ′ the space of strategies applicable to the game

(x′,d′), and by U the space of simple-minded strategies applicable to the

game (x,d). There is a bijection between the two, since any u′ ∈ U ′ may

be expressed as a sequence of substrategies, each of which corresponds to

searching a single node, i.e. u′ = (u′
1, u

′
2...), whilst any u ∈ U may be

represented as a conjunction of sub-strategies ek and uk, where the {e.} are

substrategies that carry out a (possibly zero length) exhaustive search of

nodes of type i∗, and the {u.} are searches of a single node of any type other
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Figure 16: Policy Spaces U and U ′

than k. The strategy u may be represented as u = (e1, u1, e2, u2 . . .) because

it is simple-minded.

The value obtained by applying strategy u = (e1, u1, e2, u2 . . .) to game

(x,d) is exactly that obtained by applying strategy s(u) = (u′
1, u

′
2...) to game

(x′,d′), since the effects of carrying out an exhaustive search of nodes of type

i∗ are accounted for by the transformations d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗)).

The above bijection argument is easily extensible to policies; if policy π

applies strategy u to game (x,d), define policy s(π) to be the policy which

applies strategy s(u) to game (x′,d′). This includes the optimum policy, π∗,

of game (x′,d′) which Theorem 3.1 tells us is simple-minded:

V (x′,d′) = Vs(π∗)(x
′,d′) = Vπ∗(x,d) = V (x,d)

81



3.3.3 Proof of Optimal Policy

Theorem 3.3 For a game with n types of node there exists a permutation,

(y1, . . . yn) of the integers 1 to n, termed the optimal ordering, such that

policy π is optimal if it searches a node of type yk iff k = min{i : yi > 0}.

Proof: The theorem is trivially true for n=1. For n > 1, an induction

argument applies. Theorem 3.1 proves that any optimal policy, π, for the

game (x,d) is simple-minded. Since π searches nodes of type i∗ iff xi∗ > 0,

let y1 = i∗. The optimal policy has only to be determined when xi∗ = 0. In

this case, Theorem 3.2 proves that for

x′ = (xi . . . xi∗−1, xi∗+1, . . . xn)

d′ = (d′
i . . . d′

i∗−1, d
′
i∗+1, . . . d′

n)

d′
i = (p̂i(i

∗), t̂i(i∗), f̂i(i
∗))

V (x,d) = V (x′,d′)

Now let (y2, . . . yn) be the optimal ordering of the game (x′,d′), which

involves only n − 1 different types of node, so optimal play is a consequence

of the induction hypothesis.

The proof considers n different games, since the equivalence proved by

Theorem 3.2 is applied n − 1 times. Each node type is optimal to search in

at least one of these games, so consider a node type in a game for which it

is optimal. The transformed node details of such a node type account for

the chunking of any more rewarding offspring. We therefore define p∗i , the
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corrected probability that a node of type i contains an object, as the pi value

of this game. We define t∗i , the corrected expected time taken to search a

node of type i, in a similar way. The ratio of these two we term the corrected

reward rate, denoted Ø∗
i . This is a true reflection of the box type’s reward

rate in the sense that 1/Ø∗
i is the expected time to find an object when the

only available boxes are an unlimited supply of boxes of type i.

3.4 The OR-Tree Model in Practice

The model may be used for situations with a problem which requires individ-

ual searches to be carried out in an effort to find a ‘solution’ (an object). The

domain of applicability is narrowed by the satisficing nature of the model.

This imposes the following requirements:

1. A problem may have one, none or many solutions.

2. All the solutions are of equal value.

The model also requires that the performance indicator is the expected

use of some resource (typically time or money) while the problem is being

investigated. For the model to be of use, the search must also be of a kind

which can be broken down into independent units, of which there are finitely

many categories, each of which has its own expected resource requirement, its

own known chance of yielding a solution and of creating other search units.

The original model also allows search to terminate only when a solution is
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found, or when no further units remain to be searched, although we shall

relax this requirement in Section 3.6.

Note that ‘finding a solution’ does not necessarily imply a favourable out-

come. In the drug-testing example that follows, if a solution is found then the

drug being tested has failed the required tests. Another such example is the

task of scheduling a difficult multi-stage manufacturing process. Each stage

of the manufacturing process is a node type. Its resource cost is straightfor-

ward, while the chance of its finding a solution corresponds to the chance it

goes wrong and permanently destroys the product.

A useful consequence of the generality of the model is that it can be

applied without modification to cases in which some of the tree is known

in advance. This may be achieved by the addition of extra node types. In

the general case there is a one-to-one correspondence between the extra node

types and the nodes in the out-tree which are known. The search time, ti and

probability of containing an object, pi, of a node type are set so as to match

these values of the node in the known out-tree. The internal nodes in the

known tree are represented by node types which have offspring distributions

which reflect the fact that it is known for certain exactly which nodes will

be made available. In the case where the previously known out-tree contains

subtrees which are identical, the number of node types added to the model

may be reduced by assigning the matching nodes in the tree to the same

node type. The problem of searching a set of boxes or a tree which is wholly

pre-determined [23, 52] is thus a special case of this model.
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3.4.1 Complexity and Ill-conditioning

Selection of the most rewarding node requires O(n) computations and must

be done n times, so this part of the algorithm has complexity O(n2). The time

required to transform the node type details by the equations of Theorem 3.2

depends upon the properties of the descendant distributions, fi. Repeated

slight inaccuracies during calculation of the values of p̂(), t̂() and f̂() may

be compounded and hence lead to greater inaccuracies later on in calcula-

tions, because of the recursive nature of the algorithm. Complexity problems

are therefore likely to arise in determining the optimal policy in cases with

large numbers of node types and complicated descendent distributions. Such

ill-conditioning arises particularly when two or more node types have very

similar reward rates, and so the reward rates of the nodes concerned must

be calculated to a great accuracy to determine which is optimal. However

the practical consequence of such ill-conditioning is that even a sub-optimal

policy can be expected to achieve a payoff which is very close to optimal.

If the model is applied to problems which are to be studied repeatedly

in real time then the fact that it is computationally expensive to deduce the

optimal policy may be of little relevance. The model has the great advantage

that the optimal policy, once deduced, is very easy to store and apply; it need

only be deduced once, and can then be applied swiftly in all states that arise.

This feature makes the model suitable for applications such as computer game

playing in which speed of exercising sequences of optimal control decisions is

at a premium.
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In practical applications with a large number of node types which exhibit

ill-conditioning, some degree of approximation may well be required. The

tension between the wish to deduce a strictly optimal policy and the need to

limit the complexity of the calculations required is a matter to be determined

by the relative costs involved.

3.4.2 Optimal Search for Conspiracies of Size 1

Although conspiracy numbers may be applied to the usual multi-valued trees,

we now consider their application to trees in which all the nodes are scored

with one of two values. With a certain loss of information, any evaluation of

any game tree may be treated in this way.

Figure 17: 2-Valued Conspiracy Numbers

Two-valued evaluation functions simplify the calculations about and ex-

positions of conspiracy-based techniques, since the only nodes which can
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conspire are nodes on the principal variation (marked in bold in Figure 17).

Consider an evaluation function which assigns nodes one of two values,

H(x) �→ {−1, 1}. These may be thought of as ‘probable win’ and ‘probable

loss’ nodes. We follow Knuth and Moore’s negamax notation [44]. Hence,

assume that there are two sorts of node, −1 and 1. For the sake of simplicity

of exposition, let us assume that the game tree and evaluation function are

such that:

d is a daughter of p ⇒ P [H(d) = −H(p)] = 1 − δ

P [H(d) = H(p)] = δ

We now show how the tree search model we have developed can be used

to analyse the process of searching for conspiracies of size one, and to deduce

the optimal search order. The first step of the original conspiracy number

search, upon being given a game tree, is to search it for conspiracies of size

one. That is, to search it either until expansion of a single leaf has the effect

of changing the minimax backed up score at the root, or until we can conclude

that there are no more single leaf nodes which can do this.

This problem can be seen to fit into the satisficing out-tree search model

framework without further adjustment. The state of the investigation may

be represented by L, a list of the critical leaves. The search terminates

if investigation of a critical leaf finds a conspiracy, or if the list of critical

leaves becomes empty. The leaf investigated is removed from L, and any

descendants which are critical are placed on L. We assume, for simplicity,

that both nodes take one time unit to expand. Optimal policy is to search the
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nodes in the order {1,−1}, as deduced from solving the problem involving

the following two node types:

d1 = (1 − (1 − δ)2, 1, s−1
2)

d−1 = (δ2, 1, 2δ(1−δ)
1−δ2 s1 + (1−δ)2

1−δ2 )

We have seen in Section 1.2 that several authors have derived algorithms

which evaluate game positions not only with a scalar score but also with

a measure of uncertainty, and that these can yield significant performance

gains. In this, simplified example, we suppose, that as well as assigning

them a score ∈ {−1, 1} the evaluation function separates its estimates into

two classes, types a and b, with different amounts of reliability. There are

therefore four types of nodes: {+1(a), +1(b), -1(a), -1(b)}. A realistic esti-

mate of δ is required for each node type, and could be deduced empirically.

If we assume that a node’s daughters have a probability, ṗ, of having the

same type as their parent, then as shown overleaf in Figure 18 this model

requires the following 4 node types:

d1a = (1 − (1 − a)2, 1, (ṗs−1a + q̇s−1b)
2)

d1b = (1 − (1 − b)2, 1, (ṗs−1b + q̇s−1a)
2)

d−1a = (a2, 1, 2a(1−a)
1−a2 (ṗs1a + q̇s1b) + (1−a)2

1−a2 )

d−1b = (b2, 1, 2b(1−b)
1−b2

(ṗs1b + q̇s1a) + (1−b)2

1−b2
)

This problem is in fact the one which inspired the investigation of the

tree search model which forms the main subject of Chapter 3. The tree

search model, as we have seen, is capable of solving models of considerably
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Figure 18: Possible Node Expansion Results

greater generality; the branching factor may be varied as required, as may

the number of classes of uncertainty, or the rules about how nodes of one

type give rise to nodes of another. Any of these things may be correlated, so

as to reflect observations made about a specific game. It is also possible to

model the partial expansion of nodes – by which we refer to the creation of

less than a full set of node’s daughters.
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3.4.3 Mathematical Example

For the sake of convenience in the following two examples we shall replace

the offspring distribution, fi, by a multivariate generating function, Gi(s).

Consider the search problem involving the three node types below:

d1 =
(

1

4
, 6,

1

3
+

1

3
s1s2 +

1

3
s3

)

d2 =
(

1

2
, 9,

1

4
+

1

4
s1 +

1

2
s2

)

d3 =
(
0, 1,

2

3
s1s2 +

1

3
s1s

2
2s3

)

The first step is calculate the reward rates:

Ø1 = 1
4
/6 = 1

24

Ø2 = 1
2
/9 = 1

18

Ø3 = 0/1 = 0

Hence, node type 2 is the most rewarding one. In order to deduce the sec-

ond element of the optimal ordering we require (p̂2(1), t̂2(1), Ĝ2(s)(1)) and

(p̂2(3), t̂2(3), Ĝ2(s)(3)), the modified details of the remaining node types. To

do this we first chunk together a single search of the most rewarding node

type with an exhaustive search of its descendants, to deduce p̂2(2), t̂2(2) and

Ĝ2(s)(2), the characteristics that define an exhaustive search of type 2 nodes

carried out upon a single type 2 node.

p̂2(2) =
1

2
+

1

4
p̂2(2)
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=
2

3

t̂2(2) = 9 +
1

4
t̂2(2)

= 12

Ĝ2(s)(2) =
1

4
+

1

4
s1 +

1

2
Ĝ2(s)(2)

=
1

2
+

1

2
s1

Solution of the above equation for Ĝ2(s) is a straightforward matter in

this case, since a search of the most rewarding node never reveals more than

one more node of this same type. This is the case for several classes of

problem, including the multi-armed bandit model described in Section 3.5.

Numerical methods are required in other cases.

d2 =
(

2

3
, 12,

1

2
+

1

2
s1

)

The next step is to amend d1 and d3 to reflect what we already know

about the optimal ordering, i.e. that if a node of type 2 is revealed then it
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will be optimal to search it.

p̂2(1) = 1
4

+ 3
4

1
3
p̂2(2) = 5

12

t̂2(1) = 6 + 3
4

1
3
t̂2(2) = 9

Ĝ2(s)(1) = 1
3

+ 1
3
s1Ĝ2(s) + 1

3
s3 = 1

3
+ 1

6
s1 + 1

6
s2

1 + 1
3
s3

p̂2(3) = 0 + 12
3
p̂2(2) + 11

3
(1 − (1 − p̂2)

2)) = 20
27

t̂2(3) = 1 + 11
3
t̂2(2) + 12

3
(t̂2(2) + (1 − p̂2(2))t̂2(2)) = 43

3

Ĝ2(s)(3) = 2
3
s1Ĝ2(s)(2) + 1

3
s1(Ĝ2(s)(2))2s3

= 1
3
s1 + 1

3
s2

1 + 1
12

s1s3 + 1
6
s2

1s3 + 1
12

s3
1s3

The modified node details are therefore

d′
1 =

(
5

12
, 9,

1

3
+

1

6
s1 +

1

6
s2

1 +
1

3
s3

)

d′
3 =

(
20

27
,
43

3
,
1

3
s1 +

1

3
s2

1 +
1

12
s1s3 +

1

6
s2

1s3 +
1

12
s3

1s3

)

We now compute the reward rates as shown below and conclude that

type 3 is the new most rewarding node type since Ø3 > Ø1, so the optimal

ordering is {2, 3, 1}.

Ø1 = 5
12

/9 = 5
108

Ø3 = 20
27

/43
3

= 20
387

3.4.4 Drug Testing Example

As a simplified example of a realistic application, suppose permission is being

sought to market a newly developed drug. Before a license can be given there
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are various statutory tests which must be carried out. Assume that legislation

requires that a drug be tested for its allergic potential, a, interaction with

other drugs, i, and for effectiveness, e.

The anti-allergenic trial, A, requires that the drug not trigger an aller-

gic reaction in any of four test subjects particularly susceptible to allergic

reactions. The drug interaction trial, I, consists of a test upon three test

subjects, and the drug is deemed to pass if at most one patient shows evi-

dence of a negative interaction. In order to be marketed the drug also must

show evidence of a sufficiently high rate of effectiveness. The drug is deemed

to pass the effectiveness trial, E, if it has a therapeutic effect on at least two

out of four sufferers.

Suppose that the relative costs of testing a single subject in trials A, I

and E are 1:5:4, while previous work developing the drug is such that the

prior belief about the parameters is as follows:

ap ∼ Beta(1, 22) ep ∼ Beta(44, 6) ip ∼ Beta(5, 25)

The problem now is to determine the order in which the trials should be

conducted so as to minimise the expected cost until completion. Define the

following nodes. For the anti-allergenic trial:

da0 = ( 1
23

, 1, sa1) da1 = ( 1
24

, 1, sa2)

da2 = ( 1
25

, 1, sa3) da3 = ( 1
26

, 1, 1)

For the effectiveness trial:
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de00 = (0, 4, 6
50

se10 + 44
50

se11) de11 = (0, 4, 6
51

se21 + 45
51

)

de10 = (0, 4, 7
51

se20 + 44
51

se21) de21 = (0, 4, 7
52

se31 + 45
52

)

de20 = ( 8
52

, 4, se31) de31 = ( 8
53

, 4, 1)

For the interaction trial:

di00 = (0, 5, 5
30

si10 + 25
30

si11) di10 = ( 6
31

, 5, si21)

di11 = (0, 5, 5
31

si21 + 26
31

) di21 = ( 6
32

, 5, 1)

The process of deducing the most rewarding node type and updating the

details of other nodes types accordingly is repeated just as before, to deduce

the optimal ordering: {A0, A1, A2, I10, A3, E20, E31, I21, I00, E10, I11, E00,

E11}. The optimal ordering is sufficient to calculate optimal policy. The

problem starts with three nodes available for search, one each of types A0,

E00 and I00, of which A0 has the highest priority, so should be searched first.

Then, assuming no allergic reaction is observed, there will be a node of type

A1, and so that will be have the highest priority of the available nodes, and

so on. The optimal policy is therefore to carry out the anti-allergenic trial

first. Similarly, since all of the I.. node types have a higher priority than the

node type E00, it will optimal next to carry out the interaction trial to its

conclusion, and then, if necessary, the effectiveness trial.

Further detail can be added as required. If for example, trial I has a set

up cost of α which must be paid before any experimentation can take place

it suffices to add one more node type:

di = (0, α, si00)
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Now suppose, in addition, that the number of separate drug interaction

trials required is itself variable and can only be determined by a preliminary

investigation at a cost of β. The number of interaction trials required may be

modelled by a general discrete distribution, but for the purposes of illustra-

tion, let us suppose that it was a geometric(k) distribution; the extra node

type added would be:

dpi =

(
0, β, (1 − k)

∞∑
n=0

(ksi00)
n

)

3.4.5 Computer Software Example

We now present an example of an application that motivates the model ex-

tension described in Section 3.6. Suppose that a software developer contracts

another firm to check the reliability of a piece of a new product before it is

released. For this process, the software involved is broken down into a set of

individual modules of code, each of which is supplied with its own specifica-

tion that describes the intended functionality.

The consultancy firm is paid a certain amount for each module of code

investigated. Modules in which a deviation from the accompanying specifi-

cation is detected are returned to the original company together with details

of the bug. Modules in which no fault is detected are guaranteed ‘OK’ by

the consultancy. The nature of the agreement is such that the consultancy

is obliged to pay a certain levy for every module which is guaranteed ‘OK’

but later discovered to contain a bug.

Modern methods of software design mean that each module of code may
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be well modelled as a separate problem. The ‘object’ that is searched for is

a fault in the code. The node types are submodules of code. Upon investiga-

tion, each submodule of code may be shown to be functioning incorrectly (ob-

ject detected), to be functioning correctly (no object detected, no offspring

generated), or to have a functionality that depends upon the conjunction

of the functionality of one or more other submodules (no object detected,

offspring generated).

Early retirement is an essential feature for application of the model to this

problem, since in the marketplace it is simply too time consuming to test a

program to the point where one can have 100% confidence that no bugs

exist. With the extra assumption that once the software is released onto

the marketplace, any module containing a bug will eventually be detected

as such, this means that the expected cost of ceasing investigations into a

particular module and declaring it ‘OK’ is proportional to the probability

that it contains a bug, which is the form of the early retirement function

specified in Subsection 3.6.1.

3.5 Bandits

We now review a class of standard models referred to as bandit problems. A

one armed-bandit is in one of a finite number of states. When activated it re-

turns a random payoff the expectation of which is dependent upon that state.

Each activation also entails a random transition to another state, according

to known probability distribution. A multi-armed bandit is a problem com-
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posed of a set of one-armed bandits, in which the operator of the bandits can

choose which project to activate, and is aiming to do so in a manner that

maximises his expected reward.

If there is no discounting, the multi-armed bandit problem is a discrete

Markov problem. With discounting, the length of time taken for each acti-

vation becomes important. If this is allowed to vary randomly, the problem

becomes semi-Markov – as well as the states of the projects, the time at which

the last transition occurred is also relevant. In this model future rewards are

continuously discounted by α.

3.5.1 Gittins Indices

In 1979, Gittins[25] proved that it is optimal to allocate each ‘arm’ of the

bandit a separate index 15 depending only upon the state of that project, and

then the projects with the greatest available indices. Gittins’ proof proceeds

by comparing projects with a ‘standard project’ which yields a constant

stream of rewards.

Whittle[89] produced a more natural proof of the optimality of Gittins

indices, and provided an interpretation of them by introducing the idea of a

‘retire’ option. Retirement from a bandit process results in receipt of a single

amount referred to as a terminal reward.

15Gittins termed them dynamic allocation indices, but at the suggestion of Whittle[89],

Gittins index has become standard
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3.5.2 Branching

Whittle[89] developed his proof of the optimality of Gittins indices to ad-

dress a problem considered by Nash[53], in which the number of projects is

not constant. He assumed, for convenience, that projects fall into one of

finitely many classes, each of which has finitely many states. He proved the

optimality of the Gittins index policy for the case in which new projects ar-

rive at a known random rate. He referred to this model as the ‘arm-acquiring

bandit’.

The ‘branching bandits’ model of Weiss[88] is a very powerful generali-

sation of the semi-Markov multi-armed bandit model. It allows the number

of new projects that arrive, termed ‘descendants’ by Weiss, to depend in a

general fashion upon the project activated, and so the arm-acquiring model,

in which it is not, becomes a simple special case. Weiss proves the optimality

of a Gittins index policy.

A welcome development in the theory of semi-Markov multi-armed ban-

dits was a very simple proof of the optimality of index policies by Tsitsiklis[85].

This owes quite a lot to Weiss’ paper and is generalisable to the branching

bandit case. Its key feature, however, an induction on the cardinality of the

bandit’s statespace, makes it considerably simpler. Its structure is identical

to the independently discovered proof of the optimal policy for the OR-tree

model given in Subsection 3.3.3.

The important paper of Bertsimas and Niño-Mora[17] establishes a frame-

work with which to analyse a wide range of stochastic and dynamic schedul-
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ing problems in a radically different fashion. Their approach is not based

around dynamic programming, but they characterise the optimal policy by

using a linear program. This approach yields closed formulae for the max-

imum reward of a multi-armed bandit. Glazebrook and Garbe[28] use this

to develop simpler dynamic programming proofs of the optimality of Git-

tins index policies for finite state branching bandits, as well as suboptimality

bounds.

3.5.3 Search Problem Applications

In his comment on Gittins[25], Kelly[42] points out how multi-armed bandits

can be used to solve the ‘boxes’ search problem, as described in Section 3.1,

with overlook probabilities. He does this by considering a family of alterna-

tive bandit processes, with no transition costs, that give a reward of αt it the

object is found at time t. The issue of stopping is conveniently dealt with by

assuming that the searcher does not know whether the object has been found.

Kelly also explains how another classic problem, the ‘gold-mining’, or ‘bomb-

ing’, problem first formulated by Bellman[11] can be solved by applying the

multi-armed bandit framework.

As the solution to both of these problems was already known, he re-

marks, the real advantage of formulating them as bandit problems is that

this illustrates how slightly more general problems may also be fitted into

the framework. As an example, he supposes the problem in which the proba-

bilities of some of the boxes were not known exactly; the learning that results
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from unsuccessful search can easily be fitted into the bandit framework.

The paper by Kadane and Simon[37] of two years earlier established the

optimal policy for the boxes and slices case, and contains a flawed proof of

the case in which search of boxes is constrained by a general partial ordering.

This case, both with and without discounting, was proved independently by

Gittins and Glazebrook[29].

Glazebrook[27] had earlier proved the case in which the precedence con-

straints formed an out-tree. As pointed out by Gittins[26], it is a simple

matter to solve this problem by constructing a branching bandit process.

3.5.4 Link with OR-Tree Model

The ‘boxes’ search model of Section 3.1 specifies parameters pi as the proba-

bility that a box contains an object, and ti as the time taken to search it. We

now show how it can be understood by using the framework for semi-Markov

bandits. As suggested by Kelly in his comment on Gittins[25], each box has

an equivalent bandit.

The cost structure, however, is different. The bandits have two states -

‘searched’ and ‘unsearched’. The retirement penalty and costs of searching

an already searched bandit should be sufficiently large that it is optimal to

search all the unsearched bandits, in some order, and then retire at once.

The expected cost of searching a box, ti, is minus the expected running

reward, Ri, of the activating the corresponding bandit in the ‘unsearched’

state, suitably adjusted to account for its being paid at time Ti, assuming
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continuous discounting at rate α ∈ (0, 1]:

Ri = −eαTiti

The discounting of the bandits is associated with the possibility of finding

the object in the boxes search. To this end, the bandits have the following

activation times:

Ti = − ln(1 − pi)

α

The boxes problem minimises
∑

ti, whilst the associated semi-Markov

bandit problem maximises
∑

Ri.

Construction of an equivalent semi-Markov bandit problem for the lin-

ear precedence constraints model of Section 3.1 is straightforward, once the

reward rate for semi-Markov bandits has been calculated. From the above

formulae:

Øi =
pi

ti
=

1 − e−αTi

−Rie−αTi
=

1 − eαTi

Ri

We observe that this is the reciprocal of the conventional form of the

Gittins index.

The stochastic search case is equivalent to the semi-Markov branching

bandit model, as described by Weiss[88]. The distribution of descendants,

gi(s, z1 . . . zN) is the the offspring distribution fi described in Section 3.2.

Tsitsiklis[85] writes in his proof of the Gittins index theorem for semi-

Markov bandits:

The proof given here is very simple and it is quite surprising that

it was not known earlier. Perhaps a reason is that for the proof
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to go through, we have to consider semi-Markov bandits rather

than the usual discrete-time Markov bandits.

It is correct that the method of proof does not work on the standard

discrete-time Markov bandit model. However, as made clear by the above

there is an equivalence between the semi-Markov bandit model and the

Markov tree search model. This clarifies the position of the independently

discovered proof given in Subsection 3.3.3. The tree search model has the

‘probability of discovering an object’ which is equivalent to a nodetype-

specific discount factor. This enables the crucial induction step of the proof

by providing a means to carry out the chunking of node types.

3.6 Retiring Early

Retirement was introduced to the theory of multi-armed bandits by Whittle[89].

This is the option of permanently rejecting all the bandits, and earning in-

stead a single payoff, termed a retirement reward, M ∈ R. To see how this

can be conveniently brought within the existing multi-armed bandit frame-

work, consider a bandit with a single state which yields reward M/(1 − α)

when activated. Activiating this bandit does not change the state. Therefore

once it becomes optimal to do this it will remain so, resulting in a stream of

payoffs M/(1 − α), αM/(1 − α) . . ., equivalent to a one-off payment of M .

Seen in this way, the addition of a retirement option looks more like an

interesting feature of the multi-armed bandit framework than a real extension
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to it. Indeed, the fact that it was introduced by Whittle principally to

facilitate a shorter proof of Gittins Index Theorem would certainly support

this view, and may explain why ‘retirement’ has not been developed much

further. The inadequacy of this model of retirement is exemplified by the

software development scenario presented in Subsection 3.4.5 above, in which

the expected payoff from retiring should be allowed to depend upon the states

of the projects. We now address this problem.

Let us add an action, retirement, which may be taken at any stage, with

the effect of immediately terminating the search, incurring a penalty cost

M(P ), a function of the probability that there is at least one object some-

where. Whittle’s retirement option is equivalent to using a retirement func-

tion M(P ) = MIP∈(0,1).

The previous model allowed termination only upon discovery of an object

or when all search opportunities had been exhausted, and so suggests use of

the following penalty function:

M(P ) =




∞ : P ∈ (0, 1)

0 : P ∈ {0, 1}
This new model is identical to the original one, because of the regularity

conditions imposed concerning the probability, p′′i , that there is an object

amongst the offspring of a type i node. The two models are not equivalent

if there is an i for which p′′i = 1, since an occurrence of such a node would

allow an early retirement in the second model which would be prohibited in
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the original model (because discovery of such a node shows that an object

exists somewhere without actually locating it). Similarly, if there is a node

type with qiq
′′
i = 1, then the two models again diverge.

We now consider some important retirement functions, in rough order of

tractability. Only for the first of these is the optimal policy proved in the

general case.

3.6.1 Retire and Say “No”

Theorem 3.4 The optimal policy for penalty functions of the form

M(P ) = IP<1(a + bP ), with a ∈ [0,∞], b ∈ (−a,∞) is to search nodes in

decreasing order of Ø∗, until either an object has been found or all the re-

maining node types have Ø∗ < (a + b)−1, at which point it is optimal to

retire.

Proof: We first show that it cannot be optimal to retire if there is a node

type i available which has Ø∗
i > (a + b)−1. Then we show by an interchange

argument that, in this situation, it is optimal to search these nodes in order

of Ø∗. Finally, we use a one step lookahead argument to show that if there

is no node type i available with Ø∗
i > (a + b)−1 then it is optimal to retire.

The case of a = ∞ has already been proved, so we assume a < ∞.

M(P ) is bounded below by 0. Since this bound is achieved for P = 1, it

must always be optimal to retire if an object has been found.

When a node of type i is expanded, suppose that with probability qi no

object is found, and that the probability that no object exists amongst nodes
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revealed by the search is q′′i . We shall let q′i be the probability that there is

no object amongst the other nodes or their descendants. Hence:

P = 1 − qiq
′
iE[q′′i ]

Denote by Vπ0 the expected value of immediate retirement, and by Vπi0
the

expected value of searching a node of type i and then retiring. Let us now

consider the relative merits of these two courses of action.

Vπ0 = a + bP

= a + b(1 − qiq
′
iE[q′′i ])

Vπi0
= ti + qiE[M(1 − q′iq

′′
i )]

= ti + qiM(E[1 − q′iq
′′
i ]) as q′

iq
′′
i > 0 and M() is linear in [0, 1)

= ti + qi(a + b(1 − q′iE[q′′i ]))

Vπi0
− Vπ0 = ti + qi(a + b(1 − q′iE[q′′i ])) − (a + b(1 − qiq

′
iE[q′′i ]))

= ti + (a + b)(qi − 1)

= ti − (a + b)pi (10)

Retirement is therefore not optimal if there are any nodes of type i available,

where (a + b)pi > ti, that is, if Øi > (a + b)−1.

We now extend the scope of the above line of reasoning to deal not only

with boxes, but also with chunks of search. A consequence of their definition

is that the reward rate, Ø, of a partially searched chunk is strictly less than

that of the remaining unsearched part. This implies that, as we argued in

Subsection 3.1.1 that it is not optimal to intercalate any other search in the
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middle of searching a chunk. It is not optimal to retire in the midst of a

chunk, since at least one of the following is always true:

1. The searched portion had Ø > (a + b)−1.

2. The unsearched portion has Ø > (a + b)−1.

In the former case, equation (10) implies that it would have been better

to retire before starting search of the chunk, whilst in the latter, it implies

that it would be better to complete search of the chunk before retiring.

Up to now, we have seen that search should proceed in chunks, and should

not stop as long as there are no nodes available with Ø∗ ≥ (a+b)−1. Equation

(10) implies that, once this point has been reached, immediate retirement is a

better policy than carrying out one (or by induction, many) further searches

and then retiring. This establishes the set of nodes which it is worth searching

before retiring as those with Ø∗ > (a+ b)−1. The optimal policy must search

those in the order which minimises the expected time taken to discover an

object. This is exactly the problem of Section 3.3, which was shown in

Theorem 3.3 to be solved by searching the chunks in decreasing order of Ø∗.

3.6.2 Retire and Guess

Now suppose that upon retirement a guess is taken as to whether or not an

object exists, and a constant cost of K is incurred for an incorrect guess.
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This corresponds to a retirement function of M(P ) = K(1
2
− |P − 1

2
|), where

P is the overall probability that an object exists.

Lemma 3.5 If P ≥ 1
2
, it is not optimal to search a box or sequence of boxes

and then retire unless at this point P < 1
2
, or an object has been found.

Proof: We show that the lemma holds for a single box, from which the

result for a sequence follows immediately by induction. Let policy πi be the

policy of searching box i and then retiring.

Vπi0
= ti + qiM(1 − q′i)

Vπ0 = M(1 − qiq
′
i) = Kqiq

′
i

Vπi0
− Vπ0 = ti + qiM(1 − q′i) − Kqiq

′
i

If the policy retires such that 1 − q′i ≥ 1
2
:

Vπi0
− Vπ0 = ti + qiKq′i − qiKq′i = ti > 0

Theorem 3.6 If all the nodes available for search are boxes, the optimal

policy with retirement penalty function M(P ) = K(1
2
− |P − 1

2
|) is either to

retire immediately or to search the boxes in decreasing order of Ø until an

object is found or until no boxes remain with Ø > K−1.

Proof:

P ∈ [0, 1
2
] ∪ {1}:

We observe that no sequence of searches can cause P to assume a value

in the interval (1
2
, 1), successful search fixes P as 1 and unsuccessful search
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decreases it. Over this domain M(P ) = K(1
2
− |P − 1

2
|) assumes identical

values to the function M(P ) = IP<1KP , so Theorem 3.4 proves the result.

P ∈ (1
2
, 1):

Lemma 3.5 establishes that an optimal policy which searches at all must con-

tinue to do so until P ∈ [0, 1
2
]∪{1}. Such an optimal policy, therefore, cannot

leave unsearched any boxes with Ø > K−1, from application of Theorem 3.4,

always assuming no object is found. This establishes that an optimal policy

must be prepared to search all the boxes with Ø > K−1. The standard inter-

change argument proves that unless it does so in decreasing order of Ø it can

be improved upon by a policy which plays a suitably permutated strategy.

To see that it is optimal not to include in the search any boxes with

Ø ≤ K−1, we consider the payoff of such a policy, πA.

VπA
=

m∑
i=1

ti
i−1∏
j=1

qj +
m∏

i=1

qiM


1 −

n∏
j=m+1

qj




=
m∑

i=1

ti
i−1∏
j=1

qj +
m∏

i=1

qiK


1 −

n∏
j=m+1

qj




=
m∑

i=1

ti
i−1∏
j=1

qj + K
m∏

i=1

qi − K
n∏

i=1

qi
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Now consider the payoff of a policy, πA′ , which omits search of box m:

VπA′ =
m−1∑
i=1

ti
i−1∏
j=1

qj +
m−1∏
i=1

qiM


1 −

n∏
j=m

qj




≤
m−1∑
i=1

ti
i−1∏
j=1

qj +
m−1∏
i=1

qiK


1 −

n∏
j=m

qj




≤
m∑

i=1

ti
i−1∏
j=1

qj + K
m−1∏
i=1

qi − K
n∏

i=1

qi

Hence:

VπA
− VπA′ = tm

m−1∏
j=1

qj − pmK
m−1∏
i=1

qi

=
m−1∏
j=1

qj(tm − pmK)

≥ 0 if Øm ≤ K−1

Since policy πA considers m boxes in decreasing order of Øi, this estab-

lishes that it is optimal not to consider any which have Øi ≤ K−1.

We assume for convenience that the boxes are indexed in decreasing order

of Ø, so i < j implies that Øi ≥ Øj . Theorem 3.6 implies that the following

policy is optimal either for j = 0 or for the largest j such that Øj ≥ K−1.

Policy πj searches boxes 1 . . . j ≤ n until it finds
an object. If no object is found, it then retires.

Corollary 3.7 If P > 1
2
, policy πj may be optimal iff

n∏
i=1

qi > 1−
n∏

i=j+1

qi. In

this case, the critical value of K, for which immediate retirement gives the
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same payoff as a policy πj above, is given by the below:

K−1 =

n∏
i=j+1

qi +
n∏

i=1

qi − 1

j∑
i=1

ti
i−1∏
k=1

qk

Proof:

Vπj
− Vπ0 =

j∑
i=1

ti
i−1∏
k=1

qk + M


1 −

n∏
i=j+1

qi


− M

(
1 −

n∏
i=1

qi

)

=
j∑

i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi


− K

(
n∏

i=1

qi

)

=
j∑

i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi −
n∏

i=1

qi




> 0 if


1 −

n∏
i=1

qi ≥
n∏

i=j+1

qi




We have shown that if


1 −

n∏
i=1

qi ≥
n∏

i=j+1

qi


 then it is always optimal to

retire. In the remaining cases, the critical value of K is calculated as follows:

j∑
i=1

ti
i−1∏
k=1

qk + K


1 −

n∏
i=j+1

qi −
n∏

i=1

qi


 = 0

j∑
i=1

ti
i−1∏
k=1

qk = K


 n∏

i=j+1

qi +
n∏

i=1

qi − 1




K−1 =

n∏
i=j+1

qi +
n∏

i=1

qi − 1

j∑
i=1

ti
i−1∏
k=1

qk
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Linear Precedence Constraints. We now add to the model constraints

about the order in which the boxes may be searched, as illustrated overleaf.

We suppose the boxes are indexed so that for j > 0, box (i, j + 1) cannot be

searched until box (i, j) has been searched.

Figure 19: Linear Precedence Constraints

This structure is that of the model of Subsection 3.1.1, and the problem

can be analysed in the same fashion. That is, we work backwards from

the end of each stack, parsing the tree into sections that must be searched

together.

Consider the last two boxes of the ith stack. If Ø(i,ni−1) < Ø(i,ni) then

these two boxes are part of a single chunk of search. The chunking procedure

used is identical to that in Subsection 3.1.1. The validity of the chunking

process is established by the result below, which will be applied recursively
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to each stack:

Theorem 3.8 If Ø(i,ni−1) < Ø(i,ni) then any optimal policy which searches

box (i, ni − 1) must search box (i, ni) next, unless an object is found.

Proof:

If Ø(i,ni) < K−1:

Theorem 3.6 implies that no optimal policy would search either box (i, ni)

or box (i, ni − 1) even if there were no constraints. Adding constraints can

never increase the payoff from searches, and so the result is proved because

no optimal policies search (i, ni − 1).

If Ø(i,ni) ≥ K−1:

Let π(i,ni−1) be a policy which searches box (i, ni − 1), then some (possibly

empty) set of boxes, j, then retires, leaving box (i, ni) unsearched. Denoting

by q′ij the probability of there being no object amongst the boxes other than

those in stack i or set j, the payoff of policy π(i,ni−1) can be expressed as

follows:

Vπ(i,ni−1)
= t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

We shall compare the payoff of this this with that of two others, policy π1,

which differs from policy π(i,ni−1) in that it searches box (i, ni) before retiring

and with policy π0, that of immediate retirement. These policies have the

following payoffs:

Vπ0 = M(1 − q(i,ni−1)q(i,ni)qjq
′
ij)

Vπ1 = t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjt(i,ni) + q(i,ni−1)qjq(i,ni)M(1 − q′ij)

112



If q(i,ni)q
′
ij ≥ 1

2
, policy π1 is an improvement:

Vπ(i,ni−1)
− Vπ1 = q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

−q(i,ni−1)qjt(i,ni) − q(i,ni−1)qjq(i,ni)M(1 − q′ij)

= q(i,ni−1)qj(K(1 − q(i,ni)q
′
ij) − t(i,ni) − q(i,ni)K(1 − q′ij))

= q(i,ni−1)qj(Kp(i,ni) − t(i,ni))

= q(i,ni−1)qjKt(i,ni)(Ø(i,ni) − K−1) > 0

If q(i,ni)q
′
ij < 1

2
, policy π0 is an improvement:

Vπ(i,ni−1)
− Vπ0 = t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjM(1 − q(i,ni)q

′
ij)

−M(1 − q(i,ni−1)q(i,ni)qjq
′
ij)

= t(i,ni−1) + q(i,ni−1)tj + q(i,ni−1)qjK(q(i,ni)q
′
ij) − K(q(i,ni−1)q(i,ni)qjq

′
ij)

= t(i,ni−1) + q(i,ni−1)tj > 0

We now consider the remaining case, that in which a policy π searches box

(i, ni−1) and then intercalates search of a non-empty set of boxes, j, before

searching (i, ni). Since either Ø(i,ni) > Øj or Øj > Ø(i,ni−1), policy π can

be improved by a simple interchange argument, as the constraint structure

does not debar swapping j with either (i, ni−1) or, once (i, ni−1) has been

searched, with box (i, ni).

The case of linear precedence constraints can therefore be solved by ap-

plying the same chunking process that was used on the model without re-

tirement. This reduces it, as before, to the unconstrained boxes case treated

above.

We now consider what can be deduced about the general OR-tree model

with early retirement function M(P ) = K(1
2
− |P − 1

2
|). From the form of
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this function, we see that as K → 0, the cost of early retirement becomes

vanishingly small, and so, for small enough K, the optimal policy is to retire

immediately. As K → ∞, early retirement becomes increasingly expensive,

so the optimal policy tends to that of the model without the retirement

option. Note, however, that the models are only asymptotically equivalent,

since for any fixed K, M(P ) → 0 as extra nodes are added, and so retirement

is still optimal from states with small enough P .

By comparing Vπ0 with Vπi0
we can prove the following necessary (though

not sufficient) condition for states in which it is optimal to retire. We denote

by q′i the probability that no object exists outside box i or its offspring.

Theorem 3.9 For it to be optimal to retire there must not be a node of type i

available with q′i ≥ 1
2
, Øi > K−1 + Iq′iqi≤ 1

2

1−2q′iqi

ti
.
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Proof: If node i is a box:

Vπ0 = M(1 − q′iqi)

Vπi0
= ti + qiM(1 − q′i)

Vπi0
− Vπ0 = ti + qiM(1 − q′i) − M(1 − q′iqi)

= ti + qiK(1
2
− |1

2
− q′i|) − K(1

2
− |1

2
− q′iqi|)

For q′iqi ≥ 1
2

: = ti + qiK(1 − q′i) − K(1 − q′iqi)

= ti + K(qi − q′iqi − 1 + q′iqi)

= ti + K(qi − 1)

= ti − Kpi

< 0 iff Øi > K−1

For q′i ≥ 1
2
≥ q′iqi : = ti + qiK(1 − q′i) − K(q′iqi)

= ti + K(qi − q′iqi − q′iqi)

= ti + qiK(1 − 2q′i)

< 0 iff qiK(2q′i − 1) > ti

⇔ 2q′iqi−qi

ti
> K−1

⇔ 2q′iqiti−1

ti
+ pi

ti
> K−1

⇔ Øi > K−1 +
1−2q′iqi

ti

For 1
2

> q′i : = ti + qiK(q′i) − K(q′iqi) = ti

> 0

Thus:
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Vπi0
− Vπ0




< 0 | q′iqi ≥ 1
2
, Øi > K−1

< 0 | q′i ≥ 1
2
≥ q′iqi, Øi > K−1 +

1−2q′iqi

ti

≥ 0 | otherwise

(11)

Adding more descendants to a node can only ever increase the desirability

of searching it, and so, since we assumed the node type i had no descendants,

the result is also valid for any nodes of type i with probability pi of containing

an object.

Useless node types. We define a node type as being useless, if there is

an optimal policy which will never search it, no matter which other boxes

are available for search.

Corollary 3.10 A box of type i with Øi ≤ K−1 is useless.

Proof: Let πiA be an arbitrary policy which starts by searching a box of a

type i, with Øi ≤ K−1. By A we denote the sequence of searches it carries

out before retiring if the initial search is unsuccessful. Inequality (11) of

Theorem 3.9 above implies that if A is empty, then policy πiA is no better

than a policy of immediate retirement, which we shall denote π0.

We now address the case of non-empty A. Suppose the expected time

to carry out search A is tA, and that an object is revealed with expected

probability pA. We denote by p′′A the expected probability that an object
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exists amongst the nodes revealed by searching A, and by p′Ai the probability

that an object exists amongst the nodes unsearched by policy πAi.

For ØA ≥ K−1:

VπiA
= ti + qi(tA + qAM(1 − q′Aiq

′′
A))

VπAi
= tA + qA(ti + qiM(1 − q′Aiq

′′
A))

So : VπiA
− VπAi

= ti + qi(tA + qAM(1 − q′Aiq
′′
A))

−tA − qA(ti + qiM(1 − q′Aiq
′′
A))

= pAti − pitA

= tAti(ØA − Øi) ≥ 0

In this case therefore, policy πAi is at least as good as policy πiA.

For ØA < K−1:

VπiA
= ti + qi(tA + qAM(1 − q′Aiq

′′
A))

Vπ0 = M(1 − qiqAq′Aiq
′′
A)

So : VπiA
− Vπ0 = ti + qi(tA + qAM(1 − q′Aiq

′′
A)) − M(1 − qiqAq′Aiq

′′
A)

For qiqAq′Aiq
′′
A ≥ 1

2
:

= ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(1 − qiqAq′Aiq

′′
A) (12)

= ti + qitA + K(qiqA − qiqAq′Aiq
′′
A − 1 + qiqAq′Aiq

′′
A)

= ti + qitA + K(qiqA − 1)

Since ØA < K−1 and Øi ≤ K−1, KpA < tA and Kpi ≤ ti. Thus:

> Kpi + qiKpA + K(qiqA − 1)

> K(pi + qipA + qiqA − 1)
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> 0

For q′′Aq′Ai ≥ 1
2
≥ qiqAq′′Aq′Ai :

= ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(qiqAq′Aiq

′′
A)

≥ ti + qi(tA + qAK(1 − q′Aiq
′′
A)) − K(1 − qiqAq′Aiq

′′
A)

> 0 from (12)

For 1
2
≥ q′′Aq′Ai :

= ti + qi(tA + qAK(q′Aiq
′′
A)) − K(qiqAq′Aiq

′′
A)

= ti + qitA

> 0 (13)

In this case therefore, π0 is better than πiA.

We have now proved that for any policy πiA, which starts by searching a

box of type i, with Øi ≤ K−1, there exists an alternative policy which does

not, and which achieves a payoff at least as good. The theorem therefore

follows by recursive application of this result.

Identification of useless node types allows a compression of the description

of the state, since the number of such nodes available is relevant only in so

far as it influences P , the probability that an object exists somewhere. Thus,

if node types Xj+1 . . .Xn are useless, they can be ‘hidden’ in our description

of the state, and the vector (X1, . . .Xn) replaced by the vector (X1, . . .Xj, h)

where h represents the ‘hidden probability’, that is, the probability that

an object exists somewhere amongst the nodes of type j + 1 . . . n or their
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descendants. The h value has the effect of changing the effective cost of

retirement:

Figure 20: Effective M() for Different Hidden Probabilities

Since the effective M(P ) is linear for h ≥ 1
2
, the optimal policy from such

a state is to retire immediately.

One-step Lookahead Policies. We now consider the class of one-step

lookahead policies for this retirement function. A one-step lookahead policy

is optimal for the boxes case without retirement, as shown at the start of this

chapter. This may be understood to be a consequence of the simplicity of the

motives for searching a box. In the case of linear precedence constraints, this

simplicity is upset. However, we have seen that if the nodes are grouped into

maximal indivisible blocks, and search of a maximal indivisible block is taken

to be a single step then the optimal policy is a one-step lookahead policy. The

OR-tree search problem may be treated in a similar fashion, with stochastic

chunks of search taking the place of the deterministic maximal indivisible

blocks. One is therefore prompted to wonder whether the OR-tree search

problem with retirement function M(P )−K(1
2
− |1

2
−P |) can also be solved
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by a similar process of chunking together a node with some subset of its

descendants.

Suppose that there are three node types, as defined below, with ε small

but positive.

A = (0, ε, 10
11

sB + 1
11

sC)

B = ( 1
100

, K, 1)

C = ( 1
10

, K, 1)

Consider a state in which there are seven nodes of type A available.

Observe that p′′A = 54
55

, so the overall probability that an object exists is

P (x) = 1 − (54
55

)7 < 1
2
. We note that if each of the type A nodes is searched

and gives rise to a type C node, then the probability that an object exists

will rise to 1−( 9
10

)7 > 1
2
. Hence, M() is concave but not linear over the range

of possible values taken by P if all the type A nodes are searched. Thus, the

expected payoff from retirement decreases if these searches are carried out,

and it will be optimal to do some searching if ε is small enough.

We observe that expansion of a single type A node can only cause P to

adopt a value of either 1− 9
10

(54
55

)6 or 1− 99
100

(54
55

)6. Since M(P ) is linear over

this range, a one-step lookahead policy would retire rather than carry out

any search, and so fail to play optimally.
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Hence, if the optimal policy is to be a one-step lookahead policy, the step

size must be such as to consider expansion of all the type A nodes in one go.

This would require a ‘horizontal’ equivalent of the chunking concept, that is,

one which treats sets of siblings as a single chunk16. The interaction between

these, new, chunks, and the ‘vertical’ chunking process which defines maximal

indivisible blocks does not seem to be tractable. A fuller understanding of

the problems with one-step lookahead policies may lead to the development

of a more theoretical approach to the choice of step size than that presented

in Section 6.3.

3.6.3 Retire and Say “Yes”

Now suppose that upon retirement, a cost of K is incurred if no object exists.

This corresponds to a retirement function of M(P ) = IP>0K(1 − P ).

Theorem 3.11 In the boxes case, if K ≤ ∑n
i=1

∏i−1
j=1 qjti /(1 −∏n

i=1 qi) then

it is optimal to retire immediately. If K ≥ ∑n
i=1

∏i−1
j=1 qjti /(1 −∏n

i=1 qi) then

it is optimal to search all the boxes for an object in decreasing order of Øi.

Proof: Suppose that a non-empty sequence of searches, A, is carried out,

which has probability pA of revealing an object, and takes expected time tA.

Denoting by q′A the probability that an object exists in the remaining boxes,

we compare the payoff of a policy, π0, of immediate retirement, with policy

16There is an analogy here with the ‘conspiracy’ concept mentioned in Subsection 1.2.2.
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πA0, which carries out search of A, and then retires:

VπA0
= tA + qAM(q′A)

=




tA + qAKq′A | q′A < 1

tA | q′A = 1

> KqAq′A = Vπ0 | q′A < 1

If q′A < 1 it is therefore better to retire immediately than to carry out such a

sequence of searches, A, and then retire. Since we exclude boxes with pi = 0,

there is only sequence of searches with q′A = 1. This is made up of all the

boxes. The two possible optimal policies are therefore searching all available

boxes or retiring immediately. The interchange argument can be used as

usual to show that the optimal order in which to carry out search is in order

of decreasing Ø. The payoff from searching all the boxes in this order is

∑n
i=1

∏i−1
j−0 qjti, while the cost of immediate retirement is K

(
1 −∏n

i−1 qi

)
.

The following conjecture, if proved, would give some insight onto the

shape of the stopping region for the boxes case.

Conjecture 3.1 If it is optimal in the boxes case to retire from state xA and

from state xB, then will also be optimal to retire from the state below:

(
⌈

x1
A+x1

B

2

⌉
, (
⌈

x2
A+x2

B

2

⌉
. . .
⌈

xn
A+xn

B

2

⌉
).

We present a simple example to show that Conjecture 3.1 is not true in

the general case. Consider the following four node types:-

A =
(
0, 10, 1

2
sC + 1

2
sD

)
B = (ε, 46, 0)

C = (ε, 16, 0) D =
(

1
2
, K ′, 0

)
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Let ε be positive but negligibly small. We now calculate the optimal

course of action from states (A1 ∪ A2), (B1 ∪ B2) and (A ∪ B), assuming

that K ′ > K, so that, if a node of type D is found, the optimal action will

be to retire. For some value of K, we will be indifferent between immediate

retirement from (A1 ∪ A2) and searching in an effort to show that no object

exists.

V (A1 ∪ A2) = 10 +
1

2
K +

1

2

(
10 +

1

2
K +

1

2
(16 + 16)

)
= 23 +

3

4
K

So, the indifference value of K from state (A1 ∪A2) is 92 since this is the

solution to 23 + 3
4
K = K. From (B1 ∪B2), the cost to search and show that

there is no object is 92, so this is also the indifference value of K from that

state.

V (A ∪ B) = 10 +
1

2
K +

1

2
(46 + 16) = 41 +

1

2
K

Solving this equation to get the indifference value of K for (A∪B), we get

82, a lower value than that for either (A1 ∪A2) or (B1 ∪B2), and so conclude

that the retirement region in this case is not convex. The lower indifference

value can be understood to stem from an interaction of the A and B nodes;

for K < 92, the expression (A1 ∪ A2) is too unlikely to be worth searching,

while the expression (B1 ∪ B2) cannot be searched in a way that yields any

information.
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3.6.4 Other Retirement Functions

We have considered above three of the most natural choices for the retire-

ment function. The ‘Retire and Guess’ function of Subsection 3.6.2 could

be modified without major difficulty to allow for different penalties of type I

and type II errors. For many practical applications, M() might not have one

of the forms described above. If the node types did not have any simplify-

ing properties, this would probably require some approximation or solution

via dynamic programming since complete mathematical treatment of more

complicated retirement functions seems likely to be a difficult exercise.

To underline the complexity of the optimal policy for other retirement

functions, we present an example with two node types:

dA =
(

1

10
, 1, 1

)
dB =

(
1

10
, 1,

1

9
+

8

9
sA

)

Table 2 overleaf shows the optimal policy from various states for the

retirement function M(P ) = 90IP>0.06.
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111111111122222222223333333333444444
0123456789012345678901234567890123456789012345

0: ...........................aaaaaaaaaaaaaaaaaaa
1: .........................=b==================
2: .......................=bbb=================
3: ......................aaaaaaaaaaaaaaaaaaaaa
4: ....................=b====================
5: ..................=bbb===================
6: ................=bbbbb==================
7: ..............=bbbbbbb=================
8: ............=bbbbbbbbb================
9: ..........=bbbbbbbbbbb===============

10: ........=bbbbbbbbbbbbb==============
11: ......=bbbbbbbbbbbbbbb=============
12: .....aaaaaaaaabbbbbbbb============
13: ...=b========bbbbbbbbb===========
14: .=bbb=======bbbbbbbbbb==========
15: bbbbb======bbbbbbbbbb==========
16: bbbbb=====bbbbbbbbbb==========
17: bbbbb====bbbbbbbbbbb=========
18: bbbbb===bbbbbbbbbbb=========
19: bbbbb==bbbbbbbbbbbb========
20: bbbbb=bbbbbbbbbbbb========
21: bbbbbbbbbbbbbbbbb========
22: bbbbbbbbbbbbbbbbb=======

. : Optimal to retire. a : Optimal to search a type A node.
b : Optimal to search a type B node. = : Optimal to search either node.

Table 2: Optimal Policy for an Alternative Retirement Function

The number of A nodes is along the x axis, the number of B nodes is along

the y axis. The optimal policy was calculated by dynamic programming. The

program is included in Appendix C.
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3.7 Overlook Probabilities

We now modify the model to allow the inclusion of overlook probabilities, as

the original satisficing search model in the boxes case of Section 3.1 has been

modified by Hall [31], Stone [82] and Wegener [87]. We now assume that

when a node of type i contains an object and is searched there is a chance

that the object will not be detected. This causes a subtle yet important

change to the problem; if a node type with a non-zero overlook probability

is available, then however many searches are carried out, it is impossible

to conclude for certain that no object exists, because of the possibility of

repeatedly having overlooked an object.

Let us revise our initial optimality criterion, ‘expected time to termina-

tion’. We first observe that if no object exists, then it does not matter in

which order the boxes are searched. Hence:

Vπ = E[VπIObject exists + VπINo object exists]

= E[VπIObject exists] + vAll nodes

= E[Vπ|Object exists]P (Object exists) + vAll nodes (14)

Since vAll nodes is a constant, equation (14) shows that a policy which

is optimal in the original sense of minimising ‘expected time to termination’

also minimises the ‘expected time to termination given that an object exists’.

There is a positive probability that no object exists, which, with over-

look probabilities, causes search to continue indefinitely. We are therefore

required to modify the initial definition of optimality if we wish to use it to
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discriminate between policies, and so we restrict our attention to cases in

which the choice of policy makes a difference – i.e. those cases in which an

object exists. Instead of minimising expected time until termination we shall

be minimising expected termination time given that an object exists. This

modified definition of optimality does not conflict in any way with the one

used up to this point, and indeed supersedes the previous definition which

was introduced on grounds of simplicity.

Extend node type di = (pi, ti) by adding oi ∈ [0, 1) as an extra parameter,

which we shall refer to as the overlook probability. Since there is now no limit

to the number of times it may be worthwhile to search a node of type i, we

add another subscript to signify the number of times each node has been

searched. Define node type (i, j) to be a node of type i which has been

searched j times without success. Thus, to add an overlook probability of oi

to node type i, consider each type i node to be of type (i, 0), and replace the

single node type i by a family of node types i, j defined as follows:

ti,j = ti pi,j =
oj

i (1 − oi)pi

qi + pio
j
i

We modify the offspring distribution to ensure that the first time a node

of type i is searched, a node of type (i, 1) is generated in addition to any

offspring revealed, whilst unsuccessful search of an (i, j) node reveals exactly

one node, of type (i, j + 1). The only theoretical complications of extending

the model in this way arise from the step of the proof in which i∗ is set equal
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to a node type which maximises Øi. Since there are now an infinite number

of node types, we must show that there is a node type which achieves this

maximum. We shall do this by showing that Øi,j → 0 as j → ∞. This proves

that the maximum is achieved, since it implies that for any ε > 0, there are

only finitely many Øi,j ≥ ε.

Before proving this, we shall increase the generality slightly by allowing

for non-constant overlook probabilities. Let oi,j be the overlook probability

for the jth time a node of type i is searched.

Lemma 3.12 For any node type i, Øi,j → 0 as j → ∞.

Proof: The probability that an object is discovered on the jth search of a

node of type i is pi(1 − oi,j)
∏j−1

k=0 oi,k. Hence:

∞∑
j=1

pi(1 − oi,j)
j−1∏
k=0

oi,k ≤ 1 ⇒ pi(1 − oi,j)
j−1∏
k=0

oi,k → 0 as j → ∞.

Øi,j ∝ pi,j = pi(1 − oi,j)
j−1∏
k=0

oi,k → 0 as j → ∞.
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3.8 Continuous Extension of the OR-Tree Model

We now consider an extension to the boxes case of the OR-tree search model

of Section 3.1, based upon the understanding of Ø as a reward rate. Graphing

time spent searching on the X-axis, and the probability that an object is

found on the Y-axis, the original model is represented below. Also shown is

a continuous representation. In this model, a box with constant reward rate

Ø may be searched for time v to reveal an object with probability Øv.

Figure 21: Continuous Extension of the Discrete Model

The boxes model of Section 3.1 has much in common with the continuous

model in which box type i has a constant reward rate, Øi, and may be

searched for a maximum time ti. The optimum policies for the two models

are identical, although the payoff is less for the continuous extension, because

of the possibility of finding an object before a whole box is searched.
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3.8.1 Linear Precedence Constraints

The case of linear precedence constraints dealt with in Subsection 3.1.1 has

an immediate graphical interpretation. Consider the two boxes shown below.

The gradients of the lines de and ef are Ø(i,1) and Ø(i,2) respectively, so iff

Ø(i,2) > Ø(i,1), then point e lies strictly inside the convex hull of d, e and f,

in which case nodes (i, 1) and (i, 2) form a single indivisible block.

Figure 22: A Maximal Indivisible Block in the Continuous Case

By the same token, suppose further that stack i is charted in a similar

fashion. If the points d and f lie on the convex hull of all the points in the

stack, and this has different left- and right-gradients at these points, then

the indivisible block def is maximal.
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3.8.2 Concurrent Searching

We now consider how the continuous case might usefully be widened to deal

appropriately with non-constant reward functions. Firstly, we note that if

a box has a reward rate which is some non-decreasing function, Ψ(t), of

the time spent searching that box, we can consider instead Φ(t), the convex

hull of the function Ψ(t), for the same reason that boxes may be chunked

into maximal indivisible blocks in the discrete case with linear precedence

constraints. If the new rate of a node is a strictly decreasing function of t,

we may wish to search that box for a vanishingly small period of time before

changing to another box, which is a theoretical annoyance. Accordingly, we

allow concurrent searching of boxes. Any number of boxes may be searched,

with varying intensities, i1, . . . in subject to the restriction that
∑

j ij = 1.

As an example of how this simplifies the description of the optimal policy,

suppose that two boxes are available for search, with decreasing reward rate

functions Φ(t) and Φ(Kt) respectively. The optimal policy in this case is

to search the boxes with respective intensities i1 = K/(K + 1) and i2 =

1/(K + 1), since this ensures that the reward rates of the two node types

remain equal as search progresses.
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3.9 Shape of V ()

We now consider how V (x) varies in xi, by examining ∆V (x)i, defined as

the increase in the payoff from adding a node of type i:

∆V (x)i = V (x1, . . . xi−1, xi + 1, xi+1 . . . xn) − V (x)

The addition of an extra node of type i has two counteracting influences

on V ():

1. Decreasing V : The extra node or its descendants may con-

tain an object which can be relatively quickly found.

2. Increasing V : The extra node and its descendants must be

searched before it is possible to terminate and conclude no

object is present.

We now look at the net effect of these two influences. Observe that as

xi → ∞, the probability that the existing supply of type i nodes would be

exhausted tends to zero, and so both effects tend to zero. Hence ∆V (x)i → 0

as xi → ∞.

Let us assume for notational convenience that the node types are indexed

in order of decreasing Ø∗, so node type n minimises Ø∗. It is therefore

possible to deduce the following value for ∆V (x)n since we know that it is

optimal to search the extra node last of all.

V (x1, . . . xn−1, xn + 1) = V (x) + q(x)V (0, 0 . . . 0, 1)

= V (x) + q(x)t∗n
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Hence : ∆V (x)i = q(x)t∗n > 0

Figure 23: Shape of ∆V (x)i for a Least Rewarding Node Type

As shown above, a least rewarding node type is always a liability. This

is not true for any node types with an adjusted reward rate strictly greater

than that of Ø∗
n. To see this, consider x = (0, 0 . . . 0, N), for large N . As

N → ∞, the probability of ever terminating without finding an object be-

comes vanishingly small, and so does the second effect of adding a node of

type i. The first effect, however, does not, and is non-zero since we required

type i to have a reward rate strictly greater than Øn.

To see that ∆V (x)i may have the shape as shown in Figure 24 overleaf,

consider adding boxes of type 1 to a state x, with V (x) > (Ø∗
1)

−1. The

optimal policy is to search the newly revealed boxes first, since they are of

type 1. Thus:

V (x1 + 1, x2 . . . xn) = t∗1 + q∗1V (x)
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Figure 24: One Possible Shape of ∆V (x)i

∆V (x)1 = V ∗
1 − p∗1V (x) = t∗1(1 − Ø∗

1V (x))

The shape of ∆V (x)i may also have a turning point, as shown in Figure 25

below. Consider for example x = 0. For any node type i, ∆V (0)i < 0, since

V () is minimised at 0.

Figure 25: Second Possible Shape of ∆V (x)i
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3.10 Summary

We have extended the branching bandits model of Weiss[88] in a number of

ways. The equivalence between the semi-Markov continuous discounting case

and the discrete case with transition dependent discounting highlighted in

Subsection 3.5.4 could be used to derive a simple proof of the Gittins index

theorem for discrete-time multi-armed bandits. The resulting proof would

have much in common with Tsitsiklis’ [85] proof for semi-Markov bandits.

The formulation of Ø as a reward rate and the discussion of overlook prob-

abilities makes clear that in certain circumstances, the case of a (countably)

infinite number of node types is tractable.

The non-constant ‘retirement function’ introduced in Section 3.6 is a pow-

erful innovation, since it allows for its application to practical situations in

which it is desirable to terminate search and make a decision based on its

findings before an exact result is known. Specification of a retirement func-

tion allows for more powerful control of the search. As an illustration of its

potential in the context of computer search, we note that it allows for a single

search to be efficiently conducted in parallel, by allowing dynamic allocation

and re-allocation of subsearches in accordance with findings.

Heuristic evaluations of nodes are commonly used only to determine which

is the best of a given set of positions. This frequent under-utilisation of the

information calculated means that the adoption of such an apparently sim-

ple evaluation function as that presented in Subsection 3.4.2 need not be as

restrictive as at first appears. A standard evaluation function H : x �→ R
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might, for the purposes of search control be replaced by IH(x)>H(root). This

would separate out the positions into two classes, those which were an im-

provement on the current position and those which were the same or worse,

which would suffice for some purposes.

An ability to make rational decisions about whether to terminate the

search early seems likely to broaden the applicability of the model very con-

siderably, since there are many situations where the goal of search is not

to find an object but merely to discern as quickly as possible whether an

object exists. Suppose, for example that a batch of goods has been manu-

factured. It is clearly of great value to have a procedure to automatically

calculate whether the probability of eventual success is sufficient to warrant

continuation of a series of quality control tests.

As currently described, the model is limited to graphs with an out-tree

(or out-forest) structure. An obvious question is whether search of more

general DAG’s can be modelled in a similar fashion. The main problem with

such an extension seems to be that the model is based upon a state which

is a vector of scalars of fixed length. A more general DAG structure causes

difficulties with this representation since it becomes necessary to keep track

of previously searched branches.
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4 AND-OR Tree Search

To grasp the notion of an ‘AND-OR tree’ we recall how the ‘OR-tree’ search

problem of the previous chapter can be envisaged as an investigation into

the truth of a logical expression. In this chapter we address a more general

problem than that of the previous one, by redefining the class of logical

expressions to be those which include L iff it satisfies one of the following:

1. L is a logical primitive.

2. L ≡ (X ∪ Y ), where X and Y are both logical expressions.

3. L ≡ (X ∩ Y ), where X and Y are both logical expressions.

4. L ≡ Xc, where X is a logical expression.

The symbol ‘∩’ represents the customary binary Boolean ‘AND’ operator,

and ‘c’ the unary Boolean ‘NOT’ operator, both defined as usual. Any logical

expression L can be written as a tree, with the internal nodes as ‘c’, ‘∩’ and

‘∪’ operators, and the leaves as logical primitives. There are a variety of

normal forms for representing logical expressions as defined above, of which

I have found one particularly clear, because it emphasises the similarity with

the OR-Tree model. It uses the following equivalence:

X ∩ Y ≡ (Xc ∪ Y c)c

We shall also exploit the associative property of the ‘∪’ operator, and so

all the logical expressions in this chapter will appear in a form without
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‘∩′ operators, and with alternate levels of ‘∪’ and ‘c’ operators. For ex-

ample, the logical expression (A ∩ Bc) ∩ (C ∪ D) would be transformed into

(Ac ∪ B ∪ (C ∪ D)c)c, represented in the below figure.

Figure 26: Sample Representation of (Ac ∪ B ∪ (C ∪ D)c)c

Whilst it is well known that any such logical expressions can be trans-

formed to one which has only the single operator ‘NAND’, this representation

is not useful for our purposes. This is because the economy of operators is

achieved by duplicating the logical primitives (e. g. Ac ≡ (A NAND A),

which brings more serious problems of its own17.

17Since the two A’s in the above example correspond to a single node, they share a

single expansion. This representation would therefore enforce a dependence structure
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4.1 Deterministic Case

By way of introduction we first consider the case in which the logical primi-

tives are boxes. This problem was first addressed by Joyce [35]. The optimal

policy may be efficiently deduced in time proportional to the overall length

of the logical expression by working backwards from the tree which repre-

sents it. The leaves are simple logical primitives. Iterative application of the

two steps below suffices to transform an arbitrary logical expression into an

OR-tree of depth one which can then be solved in the fashion described in

the Section 3.1:

1. Sibling chunking: This applies to logical expressions of the

form L = l1 ∪ l2 ∪ . . . ∪ lN , where each li is a simple logi-

cal primitive. This is an example of the boxes case of Sec-

tion 3.1, so the optimal policy is to search the li in decreasing

order of Øi. Assuming the node types are ordered by Ø, so

that Øi ≥ Øj for i < j, we have the following formulae for

tL, the expected time taken to determine the truth of L, and

for pL, the probability that L is true:

tL =
N∑

i=1

ti
i−1∏
j=1

qj pL = 1 −
N∏

i=1

qi

between the logical primitives which violates the fundamental assumption, that each logical

primitive is a single search opportunity which may be explored independently of all the

others.
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Thus, the compound expression, l1 ∪ l2 ∪ . . . ∪ lN can be

represented by a new simple logical primitive, L, with details

dL = (tL, pL).

2. ‘Complement’ Removal: This applies to logical expressions

of the form Lc, where L is a simple logical primitive. We

replace Lc by a new simple logical primitive, �L, with t�L = tL,

p�L = 1 − pL.

4.2 Stochastic Case

We now increase the scope of the model to cater for a more general class

of logical primitives. We assume that, upon search, each logical primitive

may expand to any logical expression, according to a known distribution.

This requires an extension of the notation used for the OR-tree model, since

the space of logical expressions which include ‘∪’ as well as ‘c’ cannot be

summarised in the same fashion by a finite length vector. As an introduction

to this extra notation, consider the node of type A, defined below:

dA = (
1

3
, 9,

1

2
+

1

4
sA +

1

8
s2

B +
1

8
sAs2

B)

We represent this as follows:

A[9] =


 〈T〉 〈F〉 A B1 ∪ B2 A ∪ B1 ∪ B2

1
3

1
3

1
6

1
12

1
12




The special elements, 〈T〉 and 〈F〉 correspond to ‘true’ (an object is

found), and ‘false’ (no object is found, and there are no descendants). We
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shall use this form of notation wherever necessary — that is, wherever a

search may give rise to an expression with a ‘c’ or ‘∩’ constructor.

As defined above, the model encompasses some problems for which the

notion of ‘optimal policy’ is ill-defined. Consider, for example, the node type

below:

A[1] =


 〈T〉 〈F〉 (A1 ∩ A2) ∪ (A3 ∩ A4)

ε ε 1 − 2ε




For ε = 0, the truth of A is obviously undecidable, since it will never ex-

pand to 〈T〉 of 〈F〉. For small enough positive ε, there is non-zero probability

of the expression being undecidable, as can be understood from thinking of

the search of A as a branching process. Such expressions, where the expected

number of searches of the optimal policy is infinite, we term intractable, and

do not address further.

Another class of expressions require only a finite number of searches, but

may nevertheless be searched ad infinitum. As an illustration, consider the

degenerate node type X, defined below:

X = (A ∪ B) A[1] =


 A

1


 B[1] =


 〈T〉

1
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4.3 Nature of the Optimal Policy

Fundamental to the simplicity of the stochastic OR-tree search model is the

fact that results from one part of the search tree have no influence upon how

it is optimal to explore other parts of the tree. This might seem to be a simple

consequence of the independence of each individual offspring distribution, but

this is a necessary, not a sufficient condition for this property. In addition to

this there must also be a simplicity of structure of the search model. This is

satisfied in the stochastic OR-tree search model, since it is possible to deduce

whether or not the goal has been met by looking at each leaf in isolation. (If

an object has been discovered at any of them, it has!)

This simplicity of structure means that each part of the tree can be con-

sidered in isolation, and implies that there is an optimal policy within the

class of pre-empt/resume policies. This class contains policies that dynami-

cally choose which parts of the tree to search, but not how to search them.

An obvious first question when addressing the general stochastic AND-OR

tree search problem is whether there is a pre-empt/resume policy which is

optimal.

Figure 27 overleaf shows two different search problems which include the

sub-search of the expression Y , illustrating why a pre-empt/resume policy is

not necessarily optimal. Suppose that there are two alternative policies for

searching Y . Policy π1 allows for a quick and relatively accurate judgement

to be made about whether or not Y is true. Policy π2 by contrast does not,

but determines the truth in less time, on average.
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Figure 27: Different Requirements for Searching Y

Policy π2 is to be preferred in case (2), but not necessarily in case (1).

The reason for this is that the ‘intermediate information’ associated with

policy π1 is of use in case (1), since it may show that switching to search one

of the Xi expressions is preferable to further search of Y . In this way, the

expected time to search the overall expression can be reduced.

An example of an expression Y for which two such search policies exist

is as follows:

Y = (A ∪ B) X = (Y c
1 ∪ Y c

2 ∪ . . . Y c
N)

The following node types are defined:

dA =
(
0, 1,

1

2
sB +

1

2
sC

)
dB =

(
99

100
, 10, 1

)
dC =

(
1

2
, 10, 1

)

We must search one of the identical Yi, so for definiteness assume we

search Y1. The decision to be made is therefore whether we search A1 or B1.

A little reflection on the problem will suffice to show that the optimal choice

143



Figure 28: Pre-empt/Resume Counterexample

depends upon the value of N , thus violating non-locality and implying that

optimal play cannot in general be a pre-empt/resume policy.

As N → ∞, the probability that X is true tends to 1, and the value of

refuting a single Y c
i tends to zero. The aim of search must therefore be to

prove a Y c
i to be true, thus proving X to be true and allowing termination

of the search. This is equivalent to refuting a Yi. Bearing this in mind, it is

better to start search of a Yi by an exploratory search of Ai. If this shows

the Yi to be equivalent to Bi1 ∪ Bi2 , it is optimal to ‘retire’ from this Yi

and choose another, until a Yi is discovered that is equivalent to Bi ∪ Ci, an
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expression which is 50 times more likely to be false, and so more worthy of

investigation than Bi1 ∪ Bi2 .

Now consider the opposite extreme, N = 1. In this case, a refutation of

Y c
1 will terminate the search, showing X to be false. This can be achieved

with probability 99
100

by search of B1. Search of A1, by contrast, offers no

immediate chance of terminating the search, and, whatever node it reveals,

the best node to search next will be B1.

To recap, we find that there is no single answer to the question “How is it

optimal to search the sub-expression Y1?”; if it has no siblings, it is optimal

to begin by searching B1, while if it has many siblings, it is optimal to begin

by searching A1.

4.4 Non-optimality of Index Policies

The counterexample described in the previous section demonstrates that the

AND-OR tree search problem cannot be solved by an index in the same way

that the OR-tree search problem can be solved by calculating Ø(). We now

examine the possibility of treating an AND-OR tree as an OR-tree of depth

one with an infinite number of node types.

We see that an AND-OR tree can be written (Y1 ∪ Y2 . . . Yn)c, as shown

in Figure 29. The presence or absence of a ‘c’ makes no difference to the

fundamental conception, which is to extend the result of the Chapter 3 by

dealing with each of the Yi’s as if it were a simple logical primitive as opposed

to a compound logical expression. In general, this requires that there be a

145



Figure 29: Viewing an AND-OR Tree as an OR Tree

countably infinite number of node types, since each Yi may be an arbitrar-

ily complex AND-OR expression. Even in the special case in which the Yi

cannot become arbitrarily complicated, but can be transformed by search

into one of only a finite number of terms, we show by considering the pre-

empt/resume counterexample of the previous section that this concept still

presents problems.

To represent X as an OR expression, we need a state for each logical

expression to which search of the Yi can lead. For clarity, we index these
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states numerically:

s1 = Cc s4 = (B ∪ C)c

s2 = Bc s5 = (B1 ∪ B2)
c

s3 = Ac s6 = (A ∪ B)c

The expression Y therefore corresponds to a node of type 6, so state

(0, 0, 0, 0, 0, 1), whilst X corresponds to state (0, 0, 0, 0, 0, n). The node types

have the following characteristics:

d1 =
(

1
2
, 10, 1

)
d2 =

(
1

100
, 10, 1

)
d3 =

(
0, 1, 1

2
s1 + 1

2
s2

)
d4 =

(
0, 10, 99

100
+ 1

100
s1

)
or

(
0, 1, 1

2
s5 + 1

2
s6

)
d5 =

(
0, 10, 99

100
+ 1

100
s2

)
d6 =

(
0, 10, 99

100
+ 1

100
s3

)
or

(
0, 10, 1

2
+ 1

2
s2

)

This problem is not yet in a form soluble by the OR-tree search model

because of node types 4 and 6, which may be expanded in more than one

way. In practice, since this example is small, dynamic programming can

be used to deduce the optimal policy. Whilst a general solution seems an

unlikely prospect, use of points made in Section 3.9 may prove sufficient to

allow an ad hoc solution by dynamic programming to some specific classes

of problems.
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4.5 Summary

The AND-OR model described above is a powerful one, capable of appli-

cation without modification to the task of (bi-valued) game tree searching.

Unfortunately, it does not seem to be an easy task to deduce an optimal

policy.

An important observation about the AND-OR tree search case is that

the optimum policy is not a pre-empt/resume policy. The non-locality of the

optimum policy, together with the observation that no one has yet come close

to solving this problem strongly suggest to me that aiming for a method of

deducing a strictly optimal policy may, in the general case, be an unrealis-

tic goal. A more fruitful approach may therefore be to pursue methods of

deducing a policy which is both easily computable and ‘nearly optimal’, in

some sense.

A final, important, point which deserves to be made is a consequence of

the fact that knowledge of whether or not an object exists affects the optimal

policy. Given that an object exists, a simple Ø-based policy can be used, not

to direct all the search, but simply to choose which top level branch it is

optimal to search. An admittedly speculative example of how this might be

used is the assumption that might be made by a game-playing program that

somewhere in the game tree it is searching, a winning variation does indeed

exist.
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5 Time Control

The difference between a tree search procedure and a game-playing algorithm

is an important and underestimated one. The latter will include a tree search

procedure, but something more is required — it must also have a method

for terminating searches at some point. Basically, a tree search procedure

looks upon a single move as the whole problem, whilst a game-playing algo-

rithm looks upon the problem as that of managing a series of moves, with

concomitant searches, and makes rational decisions about how to share any

transferable resources (i.e. time18) between them. The role of time control

may therefore be summarised below:

Game Playing = Time Control + Tree Search

While tree search algorithms have been the subject of much research,

very little has been published in the artificial intelligence literature on time

control. This paucity of literature demands an explanation, particularly when

one considers how poorly the standard ‘flat rate’ approach models that of

human experts. The method of controlling time which still provides the basis

for many otherwise refined game-playing programs is to apportion the search

time between the moves on a simple pro-rata basis, so that the same amount

of search is spent on every move. This is a very crude method of resource

allocation, most obviously in cases where the player has only one legal move

18Also information, but analysis of this issue is beyond the scope of this text.
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at his disposal19. Any human gameplayer will confirm that some moves are

more important than others, in the sense that a player with a fixed time limit

for the whole game will naturally wish to consider for longer before making

them.

It is almost tautological to state that a player spends the longest on the

positions he finds the most difficult, which are the ones in which it is hardest

for him to determine which move it is best for him to play. Nevertheless,

this statement contains the key to the issue of time control, and provides at

least a partial explanation as to why so little work has been done on formal

methods of time control:- to be able to apportion time in an efficient fashion,

an ‘understanding’ of the consequences is essential.

By their very nature, brute force methods — which were until very re-

cently ubiquitous amongst the top game-playing programs — do not have

any such understanding. Subsection 1.1.4 introduced the method of singu-

larity extensions as a refinement to alpha-beta search. It is also possible to

view it as a time control algorithm, since it increases the amount of time

spent searching variations which involve singular moves. This hints at an-

other important observation about game-playing algorithms:- the distinction

between a search algorithm and a time control algorithm is to some extent an

artificial one. Any human game player knows this, since no one first decides

in advance of thinking about a move how much time to spend doing so. If the

19Of course, in practice programs have an if statement to detect for this, but the very

existence of such a special case illustrates the ad hoc nature of this approach.
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human thinking process is to be mimicked, then the time allocation process

must be responsive to the findings of the search algorithm, as depicted below.

Figure 30: The Relationship between Time Control and Search Control

The reason why most examples in the literature simply have a fixed bud-

get or some other very simple policy is that the ‘brute force’ nature of their

alpha-beta-based search algorithms offers so little understanding of the po-

sition. It is worth formalising the justification for this time control policy;

uniform time control assumes that the utility to be gained from searching is

the same for every move throughout a game. The quality of this approxima-

tion depends largely upon the game.
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5.1 Previous Methods

To pursue a ‘flat rate’ time allocation policy is to ignore the information

about the tree that is gathered by the searching process. Information of

this kind is readily available to a selective search since it is required by the

selective nature of the algorithm. This suggests the general form of time

control appropriate to selective search. Since the selectivity of the search

algorithm depends upon some information being accrued about the tree as

search progresses, search can be terminated as soon as the information built

up meets some criterion. The nature of this criterion depends of course upon

the time allowance, the game being played and the specifics of the selective

search algorithm. Flaws in the conception of a search algorithm will lead to

corresponding failures of the time control algorithm, since the time control

algorithm can only access information gathered by the search algorithm.

For example, consider the paradigm behind the B* family of search algo-

rithms described in Subsections 1.2.3–1.2.5. Originally, B* search was sug-

gested as a method of searching adversary trees which had accurate bounds

on their scores. Accordingly, no time control was required; the algorithm

terminated as soon as it had found the answer. As part of a game-playing

algorithm, problems arise with the initially appealing goal of finding the best

move. In a real game, some moves are more important than others, a fact

which is not recognised by B* or any of its probabilistic variants. Indeed,

the notion of a unique ‘best’ move may be flawed. It is a frequent occurrence

in the game of Go, for example, that a pair of moves have exactly the same
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game theoretic value. The general problem with use of B* in a game-playing

problem is illustrated overleaf in Figure 31, which shows four types of uncer-

tainty about the best available move, of which the top left is the most worthy

of further search. Since the B* paradigm only looks at the probability that

one move dominates the others, and ignores the amount, it does not take

into account the variance of the move estimates. Since it therefore fails to

recognise that the left hand cases are better candidates for further search, it

will not be a good basis for a time allocation policy.

Figure 31: The Problem with the B* Paradigm

We now examine the range of approaches to time control applied to the

more important selective search algorithms, in reverse order of sophistication.
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5.1.1 Best First Minimax

In the theoretical description of the best first minimax algorithm, Korf and

Chickering [47] make the bald statement that

“While in principle we could make a move at any time, we chose to

make a move when the length of the principal variation exceeds

a given bound. This ensures that the chosen move has been

explored to some depth.”

Since this is the sum total of their remarks on time control in their substantial

paper, one is forced to assume that they have paid little attention to this

topic. One possible explanation for this is to be found in their conclusions, in

which they state that “in practice, memory is not a problem because in a two-

player game, a move must be made every few minutes”. The indication here

is that practical rather than theoretical considerations may have determined

the nature of the time control policy; as well as being in keeping with the

spirit of the best first minimax algorithm — neat and simple — the setting

of such a depth threshold is expedient in that it avoids practical problems

caused by the space required to store the tree in memory. Where such a

compromise is being made to expediency it should be admitted, and the

time control policy does not seem to have any theoretical justification.
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5.1.2 Conspiracy Numbers

In his original paper on the subject, McAllester [50] describes the method

of conspiracy numbers not as a game-playing algorithm, but as a ‘procedure

. . . for growing min-max game trees’ and so does not address time control.

The results he obtained were achieved by terminating the search after a fixed

number of nodes.

Schaeffer [73] is credited with adding the notion of iterative deepening

to conspiracy number search. The usage of the term in this context is an

analogy with its use in the context of alpha-beta search; instead of increasing

the fixed depth of the alpha-beta search by one each time, the size of the

conspiracies searched for is increased by one. The most promising results

of his paper concern tactical Chess problems of the ‘Black to play and win’

type. These however are single searches and so do not require any means of

time allocation. Schaeffer acknowledges that time control remains a difficult

issue.

A natural, if rather straightforward, approach to time control would be

to impose a ceiling on the maximum conspiracy size that is searched for.

This would have the desired effect of spending less time on positions where

the best move was relatively clear and more where it was unclear. This

is, however, not merely game specific, but also implementation specific; the

‘granularity’20 of the evaluation function is very important in determining

20the precision with which positions are evaluated
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the conspiracy thresholds reached by the search algorithm.

The extent of this problem is revealed by the application of Schaeffer’s

conspiracy numbers algorithm to a set of Chess positions. The granularity

of the position evaluation function was 1
10

of a pawn. For some positions, the

algorithm was still hunting for conspiracies of size 2 after an hour of C.P.U.

time! Naive use of the conspiracy threshold is therefore not an appropriate

method of time control. A ‘flat rate’ time allocation policy is particularly

wasteful for a selective search algorithm, and so the current lack of any

feasible alternative must represent a serious drawback of conspiracy number

search.

5.1.3 PSVB*

The original paper on the B* search algorithm, like that on conspiracy num-

ber search, did not contain any discussion of time control. For his PSVB*

search, Palay [62] was therefore forced to deduce an appropriate time control

mechanism from first principles. He drew his inspiration for the task from a

major strength of B*, namely, the ability to terminate search once it becomes

clear that one move is ‘better’ than the others, even if the score of that move

is not certain.

The ‘better than’ criterion of B* is replaced in PSVB* by a rather dubious21

21Baum and Smith[6] highlight a weakness of this criterion by giving an example of

distributions A, B and C, such that A dominates B,B dominates C,and C dominates A,

all with probability > .5.
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‘dominates with probability p’ criterion. Another failing is that Palay’s

method owes too much to the standard ‘flat rate’ approach to time con-

trol, since he assumes that each move is allocated (presumably uniformly) a

‘time limit’. His basic philosophy is summarised below:

“While there is plenty of time remaining, the search should be

continued, unless it is certain that one move is better than the

remaining moves. As the amount of time used by the search

increases the levels of domination used should start to decrease.

At first the decrease should be gradual; however, as the amount of

time used by the search approaches the amount of time allocated

to the search, the levels of dominance should decrease rapidly.”

He also recognised that the need for further search is influenced by the

relative winning chances of the two players. Again, whilst the idea is not

without merit, the choice of implementation is tailored specifically for the

game of Chess.

“The choice of the actual function was somewhat arbitrary. The

guiding principle in selecting this function was that as the achieved

value of a move increases, the level of domination needed for ter-

mination decreases.”

Palay’s approach to time control was very innovative at the time at which

the work was carried out, and he was one of the first authors to pay specific
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attention to this topic. However, the fact that he never worked out how

to play from a position in which one was almost hopelessly behind merely

underlines the piecemeal nature of the approach he took to the issue of time

control.

5.1.4 MGSS*

The time control algorithm of MGSS* is based on the following algorithm

proposed in 1968 by Good [30]:

1. If no leaves have positive U(), stop and make the move which

appears best on the basis of the current search tree, otherwise

proceed to step 2.

2. Search the leaf with the greatest U(), recalculate the U() val-

ues as required, and go to step 1.

The rationale for such a schema is clear, since if the meta-calculation

costs are ignored and given a suitable definition of U(), this time control

algorithm is indeed optimal. However, as we have seen, neither of these is

possible, and so this point is of theoretical rather than practical interest.

Indeed, the problem of determining a tractable approximation of U() proved

such a difficult one that this method was all but ignored by the mainstream

of artificial intelligence research for around twenty years. The efficacy of such

a policy hinges upon the utility function, a topic which we shall address in
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Section 6.5. The MGSS* algorithm uses U(S) = E[V (S)] − TC(S), where

V (S), the value of search, is defined in Subsection 1.2.6.

Russell and Wefald [72] are uncharacteristically vague about the choice

of TC() used to implement MGSS*. The simplest choice would be to use

a constant function. For games in which different numbers of moves are

available from different positions, a more accurate TC() would — since the

units of computation are the expansion of a single node — be proportional

to the number of children of that node.

5.1.5 BP

The time control policy of the BP algorithm is analogous to that of MGSS*.

Since BP expands leaves one gulp at a time rather than one leaf at a time,

their expression for the net utility of further search is as follows:

Ugulp

tgulp
− TC(t, m)

In this expression, tgulp is the amount of time needed to carry out the

next gulp of search, while Ugulp is the expected increase in utility from doing

so, as explained in Subsection 1.2.7. The chief advance over the time control

of MGSS* is the use of a more advanced expression for the cost of time,

TC(). This takes parameters t, the amount of time left, and m, the number

of moves until the next time control. This makes the assumption that the

number of moves until the next time control is known, which is not valid if

there is an overall limit for the game unless the game is a fixed number of
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moves. The following two expressions are suggested for TC():

TC() = c6
m

t
U
(
logB

[
t

m

])
=




c3
m/t

logB(t/m)2
(Levy)

c4

(
m
t

)1
+ c5 (Szabo)

The B in the Levy formula is the expected branching factor of the search.

The two formulae are derived from suggested expressions for the value of time

by Levy and by Szabo [84]. Baum and Smith [6] explain their efforts to fit

these two formulae — by judicious choice of c. The data from which they

derive their observed utility function, U(), is a table of Newborn’s [58] of

how likely a Chess program is to change its opinion of the best move if deeper

search is carried out.

5.2 Marginal Value of Information

The appeal to some kind of ‘law of diminishing returns’ on time spent search-

ing is a very convincing one, following almost as a corollary of the exponential

explosion of nodes in the game tree. The exact nature of this principle re-

mains obstinately difficult to codify in general terms.

The ‘boxes’ problem of Section 3.1 is one in which the principle can be seen

to yield the optimal policy in a very straightforward way. Box i has reward

rate Øi = pi/ti, so the probability of finding an object is Øiti, yielding an

expected probability of termination proportional to Øi for every time unit

spent searching a box of type i. The optimal policy of searching boxes in
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decreasing order of type Øi equates to a law of diminishing returns over each

single box searched.

The addition of linear precedence constraints brings a further level of

complication. The Øi of searches by the optimal policy are no longer mono-

tonically decreasing, since searches are made not solely for their probability

of discovering an object, but also to reveal other nodes for search. If we

consider the units of the search to be maximal indivisible blocks rather than

individual nodes, the law of diminishing returns still applies.

The stochastic OR-tree model of Section 3.2 is similar in principle. The

chunking process, however, is affected by the random nature of the model.

A law of diminishing expected returns applies, where the unit of search is

a single exhaustive search. The corrected reward rates, Ø∗
i , take account of

this.

Unfortunately, the AND-OR model that is the subject of Chapter 4 is

harder to model in this fashion, due to the way the ‘∩’ branches affect the

return from searching. An expression such as ‘A ∩ B’ presents a problem

since the return from searching ‘A’ depends upon the results of searching ‘B’

and vice versa. As explained in Section 4.4, considering the composite term

‘A∩B’ as a single unit of search presents problems, not least because search

may expand ‘A’ and ‘B’ into compound terms.
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5.3 Marginal Value of Search

We now revise the two models presented in Chapter 2, so as to give the player

a choice as to how much time he uses to search. Instead of having a fixed time

limit, an unlimited supply of time units are available to the player, at a cost

of λ > 0 each. This formulation has a natural interpretation in a practical

context, and is mathematically easy since the time spent so far is a sunk

cost, that is, one which does not affect future play. Accordingly, only very

minor adaptations are necessary to the mechanics of the two models. The

only extra notational device which we shall use in this section is the symbol

Λ(τ), to stand for the marginal value of time, that is, the cost of time at

which, if the player must purchase all the time units before the game22, he is

indifferent about purchase of a further unit of time once τ units have already

been bought.

In the one-player tree search game of Section 2.2, Lemma 2.4 implies that

for λ ≥ κ, it is optimal not to buy any time, and for λ = κ, it is optimal

to buy up to H time units. For λ ≤ κ, it may be optimal to buy more,

though this depends upon the values of Y observed in relation to the specific

distribution of Y . If λ = κ the only circumstances in which it is optimal to

buy more search is if the last two Y values observed were both equal to 0,

in which case it is optimal to ‘backtrack’ up the searched tree, as illustrated

22This restriction is introduced as a slight simplification of the presentation that follows,

which is nevertheless sufficient to illustrate the principles involved. Without it, Λ(τ) is a

random variable, since it depends upon the findings of earlier search.
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on page 51 in Figure 8.

One extreme occurs if Y is distributed as follows:

Y ∼

 −κ κ

1
2

1
2




In this case, only h searches are ever required to find the optimal path

down the game tree, so Λ(τ) = 0 for τ > h. At the other extreme, if Y has

support along the whole real line, Λ(τ) decreases in τ , only reaching 0 for

τ = 2h − 1, at which point the tree is completely searched.

It is understood, although not formally proved, that Λ(τ) is a decreasing

function in τ for this game. This seems clear from the way in which search

time is exchanged for information. As the time already spent increases,

the most profitable search opportunities have already been exhausted, so

resulting in some ‘duplication of effort’. If the variance of |Y | is low, M(τ)

decreases quickly from an initially high value, since the searches yield a lot of

information. By contrast, if the variance of |Y | is high, then M(τ) decreases

more slowly because of the greater chance of revising previous decisions about

which move was best from a particular node.

In Section 2.3, we saw how to calculate Vn(), the payoff of the fuel con-

trol problem with n units of fuel available. We can therefore calculate the

marginal value of fuel exactly since Λτ() = Vτ+1() − Vτ (). In contrast to the

one-player tree search model, Λτ () need not be monotonic, a consequence of

its more general structure. Consider the construction shown in Figure 32.
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Figure 32: Construction to Show the Generality of Λτ (A)

By choosing ε > 0 to be small, and K to be sufficiently large, this shows that

Λτ (A) can be any non-negative sequence, Y1, Y2, Y3 . . . YN .

5.4 A Two-Player Search Game

We consider the following two-player zero-sum game, similar to the one de-

fined in Section 2.2. The game tree is an infinite binary tree. Players make

alternate moves. Each move is associated with score, Y , an independent

random variable of known distribution. The player whose move it is has the

option of carrying out one or more search actions before moving. Each search

makes known to that player the values of the two moves possible from the

node searched. The set of nodes searched must at all times form a tree. This

is almost the infinite height case of the familiar search structure from Chap-

ter 2. This model differs from the model described in Section 2.2, since the Y

values of sisters are independent of each other, rather than being constrained

so that Yi1 + Yi2 = 0.

The running reward, Rτ , paid from player 2 to player 1 in time unit τ is
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given below:

Rτ =




−λ | Player 1 carries out a search.

λ | Player 2 carries out a search.

y | Player 1 makes a move with value y.

−y | Player 2 makes a move with value y.

It is useful to discount the running rewards by αN , where N is the number

of moves made so far and α ∈ (0, 1]. As in Section 2.2 we specify that

E[Y ] = 0 and E[|Y |] = κ.

We now consider how to capture the value of search already carried out.

If the moves in the search information which leads down to leaf, L, have

scores y1, y2 . . . yhi
, then the net value of leaf L is defined as follows:

nv(L) =
hi∑

i=1

(−α)i−1yi

This is the net value to player 1 from playing the game until leaf Li is

reached.
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We now define the net values of internal nodes of the search information

as follows:

Figure 33: Calculation of Net Value of Internal Nodes

This defines nv() as the superharmonic majorant corresponding to our

opponent making random choices while we select the move which leads to

the node with the greatest net value. Where L refers to a tree, we shall

abbreviate nv(root(L)) as nv(L).

We suppose the left and right subtrees of L to be LL and LR, and the left

and right moves from root to have scores YL and YR, as illustrated overleaf

in Figure 34.

Theorem 5.1 For λ ≥ κ, the value of the game is 0, and Policy π∗, de-

scribed below, is the optimal policy for both players.

Policy π∗ moves to the daughter of root with the higher net
value, and moves at random if there is no more search information.
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Figure 34: Information Notation

Proof: We denote by VLeft π() the payoff from moving left and then following

policy π and VRight π() the payoff from moving right and then following policy

π. We consider the optimality equation for player 1, assuming his opponent

pursues a policy of moving at random:

V (L) = max
{
E[VLeft(L)], E[VRight(L)], E

[
max

i
{V (L + i)}

]}

Substituting in policy π∗:

Vπ∗(L) = max
{
E[VLeft π∗(L)], E[VRight π∗(L)], E

[
max

i
{Vπ∗(L + i)}

]}

= max
{
E[YL + αnv(LL)], E[YR + αnv(LR)], E

[
max

i
{nv(L + i)}

]
− λ

}

= max
{
nv(L), E

[
max

i
{nv(L + i)}

]
− λ

}
(15)
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If there is no search information, YL and YR are unknown, and LL =

LR = φ. Hence:

nv(LL) = nv(LR) = E[YL] = E[YR] = 0

E[YL + αnv(LL)] = E[YR + αnv(LR)] = nv(L)

Equation (15) therefore follows. If there is information, it follows directly

from the definition of net value.

Now, let us consider how the expansion of a leaf i of L affects nv(L). First,

we note that if the opponent is to play from i then there is no expected change

to nv(L) caused by expanding it. If the searcher can play then expansion of

i increases the net value of that leaf by αhiE[max{Yi1, Yi2}], where hi is the

depth of leaf i.

From the definition of net value, the net value of a the root of a tree

cannot change by more than the change to one of its leaves. Hence, for any

i:

nv(L + i) − λ ≤ nv(L) + E[max{Yi1, Yi2}] − λ

≤ nv(L) for λ ≥ κ

Substitution of this in (15) shows us that Vπ∗(L) = nv(L) satisfies the

optimality equation, so π∗ is the optimal policy.

We have shown that if player 2 pursues a policy of always playing ran-

domly, then player 1 can do no better than pursue an identical policy. This is

a Nash equilibrium, and so both players must therefore be playing optimally,

since the game is zero-sum.
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Corollary 5.2 For λ = κ, the value of the game is 0. Policy π1∗, described

below, is optimal, as well as policy π∗.

Policy π1∗ moves to the daughter of root with the highest
net value, if search information is available. If no search

information is available, it expands root.

Proof: Theorem 5.1 establishes the optimality of policy π∗ for λ = κ, and

so we evaluate the payoff from playing policy π1∗ against policy π∗. Policy

π∗ has been proved optimal above. The only case in which policy π1∗ differs

from policy π∗ is if there is no search information. In this case, observe from

the definition of net value that any action is optimal:

nv(L + Root) − λ = nv(L) + E[max{YL, YR}] − λ = nv(L) = 0

= E[VLeft π1∗(L)] = E[VRight π1∗(L)]

5.5 Summary

We have extended the models of Chapter 2 to allow the player to choose

how much time to spend. The modifications made were minor, but rela-

tively powerful, since they allow several of these simple games to be grouped

together as part of a common problem, with the overall reward of a linear

combination of the payoffs of each individual problem.

The result proved about the two-player search game presented in Sec-

tion 5.4 is perhaps a somewhat unsurprising but nevertheless significant one.
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It may be the first time that an optimal policy has been proved for a two-

player game with such a realistic search structure, and it demonstrates that

dynamic stochastic control can be used for this purpose.

The gap between the theoretical results proved in this chapter and the

practical methods of time control described in Section 5.1 is large indeed. Of

the time control policies described, those of the MGSS* and BP algorithms

are the most theoretically interesting. As one-step lookahead policies, they

both make the tacit assumption of decreasing marginal value of search: that

if the cost of the next step exceeds the expected utility of the information, the

cost of the next two steps will exceed the expected utility of the information

they yield. As explained, this seems a fairly reasonable approximation for

most games23.

We have seen how the issue of time control is related to search control, and

that for either to be satisfactory, a theoretically sound approximation must

be found to the notion of ‘utility’. The considerable problems surrounding

this concept will be discussed in Section 6.5.

23Doubtless, pathological games could be deduced to show the inefficiency of this, just as

Nau [55, 54, 56, 57] deduced pathological games to do the same for the minimax backing-up

principle.
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6 Computer Game-Playing

This chapter considers how the results so far established may be applied to

the area of computer game-playing, as well as giving my personal views on

the subject. Its tone is intended to be slightly less formal than previous

chapters, since the problems tackled are bigger and more open-ended. We

put this discussion in context by highlighting the tension between what is

‘optimal’ — in the dynamic stochastic control sense — and what is desirable

in a practical sense. The remaining sections then outline, in varying degrees

of detail, some new approaches to game tree searching and game-playing.

6.1 Optimality and Limited Rationality

The recent paper of Baum and Smith [6] summarises as follows the dilemma

facing those who struggle for provably optimal policies in the field of com-

puter game-playing:

“One could . . . in principle, attempt a catalog of all leaf expansion

strategies for any given game tree with a fixed number of leaves.

If we could do vast computations offline, we could pinpoint one

such strategy as optimal. But to be meaningful in practice, any

“optimal” strategy must take into account its time cost (if we

spend less time deciding which leaves to expand we can expand

more leaves), and also the interaction of one leaf expansion with

future expansion decisions. We know of no tractable approach to
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computing a provably “optimal” strategy. Since we don’t know

how to compute efficiently the exact decision theoretic utility of

expanding leaves, we search for a useful approximation.”

The result of Section 5.4 can be seen as a partial solution to the problems

raised above, in that, by application of standard dynamic stochastic control

methods, we have calculated the exact decision theoretic utility of expanding

a leaf in a simple search game. However, this ignores the problem of lim-

ited rationality mentioned above; although the policy we have calculated is

optimal — in the standard sense — we have no guarantee that it is useful

in a practical sense. Since the dynamic stochastic control model takes no

account of its deliberation time, there must always be a question mark over

the practical feasibility of solutions adjudged to be ‘optimal’ on such a basis.

The way in which dynamic stochastic control has been used so far in this

work is to deduce optimal policies for a range of simple games. These studies

are intended to yield insight into the game-playing problem, and so lead on

— directly or indirectly — to more complicated and powerful models.

Another way in which dynamic stochastic control might be applied to

game-playing is to look for policies that are optimal within a certain class,

such as the work done by Smith [79]. One might wish, for example, to

choose a particular subclass of those tree search policies which are effectively

implementable — for example, one which is O(n) in the number of leaves

searched. In this way one could ensure the feasibility of such optimal policies

as were deduced. The success of such an approach would seem to rest entirely
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upon an insightful choice of subclass.

Such an approach again stops short of tackling the fundamental problem

of limited rationality. More powerful and more challenging still would be a

framework which provided the means to show a policy to be optimal inclusive

of its own deliberation costs, presumably with reference to some standard

computer architecture. This would represent a very significant extension

of standard dynamic stochastic control theory in the direction of computer

science.

6.2 Conspiracy Probabilities

In their recent paper on probabilistic B* search, Berliner and McConnell [16]

report the failure of their attempts to combine B* with the conspiracy number

search algorithm. They summarise their conclusions as follows (italics in the

original):

“[Berliner] quickly found out . . . something very important about

why conspiracy number search has not worked. While it is useful

to think of conspiracies in the above way, and to plan to attack

the conspiracy with the fewest conspirators, in practice this does

not work. Conspiracies fall into buckets. There are buckets of

conspiracies of magnitude 1, of magnitude 2, magnitude 3, etc.

In Chess (and we would assume in almost all domains), there are

lots of potential conspiracies, and the number of conspiracies of
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magnitude 2 is usually quite large. Thus, when dealing with con-

spiracies of magnitude 2, one must examine them in some quasi-

random order, and the chances of finding the conspiracy that is

easiest to break is quite small. It is like a breadth-first search of

conspiracies, with no other clue as to what might make a given

conspiracy easy to break. This is the reason for the failure of the

conspiracy approach in game-playing. There is no good method

for deciding the weakest conspiracy of a given magnitude.”

This is a significant objection to the conspiracy number search as de-

scribed in Subsection 1.2.2; the implicit assumption in ‘conspiracy number’

that all nodes are equally likely to conspire is a serious limit to the efficiency

of such a search. The successes of such simple methods as singular extensions

and the null move are a testimony to how easily the most uncertain posi-

tions can be distinguished. It is therefore desirable to use such probabilistic

information as is available. Subsection 3.4.2 shows how, in the two-valued

case, this can be done optimally for conspiracies of size one by application

of the stochastic OR-Tree model of Chapter 3. One step further down this

road is to abandon altogether the notion of conspiracy ‘number’ in favour of

the notion of conspiracy ‘probability’. We now examine how this might be

achieved, and reflect on some of the barriers to be overcome if such a scheme

is to be developed into a practical selective search algorithm.
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6.2.1 A Redefinition of Conspiracies

The child of root with the highest backed-up score we term the provisionally

best move, and its score the provisionally best score. This is the move we

make if no further search is carried out, so defines the utility of moving

immediately from a position.

The original definition of a ‘conspiracy’ is described in Subsection 1.2.2.

It refers to a minimal set of leaves which always has a chance of changing

the provisionally best score. We note that not all such changes cause a

change to the provisionally best move. This is a matter of importance to

any algorithm which makes the Meta-greedy and Single-step Assumptions of

Subsection 1.2.6, which are important ones on grounds of tractability. The

reason is that the conjunction of these assumptions implies that unless a

search has a chance of changing the provisionally best move, it has no value,

and so the original definition of ‘conspiracy’ includes some sets of nodes which

will never be of interest.

McAllester [50] originally detailed two categories of conspiracy, ‘Prove

Best’ and ‘Disprove Rest’ strategies, as follows:

1. Sets of nodes that may decrement the score of the provision-

ally best move, so that it assumes a lower value than that

of another move.

2. Sets of nodes that may increment the score of another move,

so that it exceeds that of the provisionally best move.
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We desire to include the following additional category to include those of

the kind shown in the figure below, which were not originally included:

3. Sets of nodes which may decrease the provisionally best

move’s score and increase that of another move to exceed

it.

Figure 35: Moves 0 and i Conspire to Change the Provisionally Best Move

We now redefine the term conspiracy. We have previously defined a tree’s

conspiracies to mean a set of nodes which, if they were to assume different
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scores (as a result of search) could together effect a change to the backed-up

score of that tree’s root node. We now introduce the idea of a conspiracy to

change the provisionally best move. This is similar to the above definition

except that, rather than changing root’s score, the effect of the nodes’ coor-

dinated change is to change the tree’s provisionally best move. This redefi-

nition excludes those conspiracies which have no value under the single-step

assumption, and includes the third class omitted by McAllester [50].

Assuming the children of root are ordered so that child 0 is the provi-

sionally best move, and that move i has score si, a general form for such a

conspiracy is (i, K), where i is the number of the move that conspires to as-

sume a value ≥ K while move 0 conspires to assume a value of < K. Type 1

conspiracies may thus be expressed (1, s1), and type 2 conspiracies (i, s0 + ε),

where i is the move involved and ε the granularity of the evaluation function.

6.2.2 Ø-based Approximation Methods

The reward rate principle may be applied to the task of choosing a conspiracy

in the following straightforward way. Each node of the search information

is given a p and a t value with meanings analogous to the boxes case. For

leaves, t, the expected time to expand each node of the conspiracy, is simply

1, while the probability that the conspiracy will change that node’s value

may be deduced directly from the prior distribution for expansion of that

node.

For internal nodes of the search information with a negamax backed-up
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score of 1, all its daughters of value -1 must conspire, so the p and t values

are calculated from their daughter nodes as follows:

proot =
n∏

i=1

pi

troot =
n∑

i=1

ti

The case in which an internal node is scored with a negamax backed-up

score of -1 requires only a single daughter to conspire, and so the efficiency

of the search centres around how this choice is made. The naive Ø-based

approximation chooses the daughter with the greatest Ø value:

proot = pi∗

troot = ti∗
where i∗ ∈ {1 . . . n} maximises

pi

ti

We now consider how to percolate these p and t values back up the tree.

In order to search efficiently for a conspiracy, we need to seek out those

conspiracies with as large a p value and as small a t value as possible. We

now extend this principle, in a straightforward fashion, to the task of choosing

which daughter to search from a ‘-1’ node. Defining Øi = pi/ti as before,

suppose that, from a ‘-1’ node, we will select the daughter which maximises

Ø. This approach does not lead necessarily to choosing the overall conspiracy

which maximises Ø, as we shall see from the following example.

Suppose that we are investigating the tree shown overleaf in Figure 36.

The values shown beneath the nodes Q, S, and T, are the p and t values

of these nodes. Since ØS = (.1/1) > (.5/6) = ØT, S is deemed the most

promising descendant of R to search for a conspiracy. Hence, R is scored
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Figure 36: Inefficiency of Ø-based Approximation Method

(.1,1) and so P is scored (.05, 25). This leads to investigation of conspiracy

{Q, S} which has a reward rate of 0.002. The optimal minimal conspiracy

{Q, T}, has score (.15, 28), and so a reward rate of 0.0083̇. This example

illustrates the problem that the overall reward (1 − Πq)/Σt cannot be max-

imised simply by maximising the individual p/t ratios of the subconspiracies.

This problem is most severe for trees in which there is considerable variation

between conspiracy t values.

A ‘perfect’ solution would require a catalogue of all the p and t values of
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the conspiracies possible below a node. This would require large overheads,

both in terms of meta-calculation and in storage. Since the space required

to store the tree would be super-linear in n, the number of nodes in the tree,

we discard this approach as infeasible.

A simple compromise which reduces inefficiencies associated with a poor

choice of conspiracy whilst increasing resource usage by only a constant factor

would be not to store all the possible conspiracy details at a node, but to

store up to a certain fixed number.

In fact, since there are different percolation formulae for ‘1’ nodes and

‘-1’ nodes, it may well be efficient to store the details of different numbers

of conspiracies for odd and for even depths of the tree. The motivation for

storing a set of p and t values is to enable a better choice to be made about

which conspiracy we wish to search, and so it is also reasonable to store more

conspiracies for nodes higher up the tree (particularly the daughters and

granddaughters of root), since these nodes have the largest range of possible

conspiracies from which to choose. One way of visualising the approximation

which is going on is to consider Figure 37, overleaf, which shows (a continuous

approximation of) the profile of available conspiracies available from a node.

A simple example of how this approach would work is to store at each

node the p and t values of two conspiracies. A natural approach would be to

chose the conspiracy with the largest p value and the one with the smallest t

value, (p1, t1) and (p3, t3) in Figure 37. A choice between these two extremes

could therefore be made at the top level ‘1’ node in the tree. If the overall
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Figure 37: Range of Possible Conspiracies

reward rate of the conspiracy chosen in this manner was still too low, it

could be improved by the storage of the details of more conspiracies. As the

diagram shows, if details of a third conspiracy were stored at each node (say,

that with the greatest Ø value) this would have an intermediate position,

although it would not necessarily be the most probable conspiracy of its size.

6.2.3 PCN* Search

We consider a simpler selective tree search technique, PCN*, which is based

upon conspiracy number search, but which searches conspiracies in order of

probability, p, rather than reward rate, Ø. This is a less ambitious goal than

attempting to select conspiracies based upon the p and t values. However,

since the most likely conspiracy will tend — all other things being equal —
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to be the one with the fewest nodes, and hence the cheapest to evaluate, this

approximation may not be as crass as its simplicity would suggest.

We now explain briefly how it works, with the help of an example. The

nodes of the tree each have a scalar score, amongst which the usual minimax

relationship holds. We assume that the scores take integral values from 1

to m. In addition, every node has a conspiracy probability vector (c.p.v.),

which details the probability with which this score can be changed by the

investigation of a conspiracy amongst its children. Using C to stand for a

single conspiracy, and C for the set of conspiracies, the c.p.v. is defined as

follows for a node i with scalar score vi:


pi
1 = maxC∈C{P [C will cause this node to have score = 1]}

pi
2 = maxC∈C{P [C will cause this node to have score ≤ 2]}
...

pi
vi−1 = maxC∈C{P [C will cause this node to have score ≤ vi − 1]}
pi

vi
= 1

pi
vi+1 = maxC∈C{P [C will cause this node to have score ≥ vi + 1]}

...

pi
m−1 = maxC∈C{P [C will cause this node to have score ≥ m − 1]}
pi

m = maxC∈C{P [C will cause this node to have score = m]}




The definition of pi
vi

can be motivated by expanding the concept of con-

spiracy to include the ‘null conspiracy’, which effects no change to a node’s

score with probability 1. This has the useful consequence that a node’s pi
vi

value can be interpreted in harmony with both pi
vi−1

and pi
vi+1

.
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Figure 38: Example Conspiracy Probability Vectors

The above figure shows an example tree with conspiracy probability vec-

tors, where m=4. Nodes C, D and E are leaves of the search information,

and so their c.p.v.’s indicate the values that these leaves would take if ex-

panded, which may be determined by the method of empirical evaluation

described in Section 6.4. The c.p.v.’s of the internal nodes are percolated

up from their daughters according to the formulae overleaf. These assume

that a node has n daughters, which are ordered by their scalar score, so that
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v1 ≥ v2 ≥ . . . ≥ vn. For succinctness of expression, it will be useful to define

two extra values, v0 = 1 and vn+1 = m.

For max nodes : For min nodes :

pparent
j =




k∏
i=1

pi
j

∣∣∣vk ≥ j ≥ vk+1

max
i

{pi
j}

∣∣∣v0 ≥ j ≥ v1

pparent
j =




max
i

{pi
j}

∣∣∣v0 ≥ j ≥ v1

k∏
i=1

pi
j

∣∣∣vk ≥ j ≥ vk+1

To see how this works in practice, suppose node D was expanded, and

its c.p.v. was calculated (by percolating up from those of its daughters) to

be (.2, .4, 1, .2). Application of the formulae above yields a new c.p.v. for

B of (.3, 1, .4, .04). Note that the only element to have changed is pB
4 , the

probability of a conspiracy causing the value of B to rise to 4. This being so,

it is a trivial consequence of the percolation formulae that the only element of

the c.p.v. of A which may change is pA
4 . In fact, a glance at the formulae show

that pA
4 remains unchanged, since C was more likely to conspire to achieve a

value of 4.

As demonstrated by the example above, the change of a leaf’s c.p.v.

does not necessarily percolate all the way back to root. For the purposes of

complexity analysis, we nevertheless make this pessimistic assumption, and

find that the cost of expanding a node is dominated by this percolation, which

takes time proportional to the height of the tree. Expansion of a single node

therefore has complexity O(log n), so PCN* search is O(n log n), comparable

to BP and better than the MGSS* algorithm.
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The implementation included in Appendix B searches one conspiracy at

a time. If a greater degree of selectivity were desired, it could easily be

modified to search one node at a time — picking from the most likely con-

spiracy the node with the greatest probability of conspiring. The price for

this greater selectivity would be an increase in meta-calculation costs, al-

though the algorithm would still be O(n log n). Another refinement over

the included implementation would be to modify the criterion for selecting

a conspiracy to investigate. Rather than just choosing the conspiracy with

the greatest probability of making a change in the provisionally best move,

account could be taken of the magnitude of the score difference. Conspiracies

could be valued as follows:

V (C) = PC(Value of Best Move if C works − Value of current Best Move)

We make the point in Section 6.5 that for such a valuation to be sensible,

the ‘value’ in the above expression should not be the simple scalar score, but

should be a replacement that has been calibrated with respect to the final

outcome of the game.

6.3 Choice of Search Step

The choice of search step size is inevitably a matter of compromise. On

the one hand, the desire for selectivity motivates a small search step, on

the other, the desire for minimal meta-calculation costs motivates a large

search step. A further complication is the interaction between the choice of
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step size and the time-control policy. We saw in Subsection 3.6.2 how the

weakness of a one step lookahead policy was exacerbated by choice of too

small a step size. The MGSS* algorithm of Subsection 1.2.6 suffers from

this problem; the meta-greedy search control policy terminates the search

once the search information has a conspiracy number of two or more. This is

because the search steps are single leaf expansions, which — under the single-

step assumption — are scored individually, so no single step has positive

value.

The BP algorithm of Subsection 1.2.7 avoids this problem by not attempt-

ing to be so selective. This is a pragmatic response to the problem. The pa-

rameter, ‘gulp size’ controls selectivity, providing a continuum of behaviours

from highly selective to non-selective. Experiments by Smith, Baum, Garrett

and Tudor [80] with BP in the game of Othello show how the performance

of BP depends upon a suitable choice of gulp size. They conclude that the

algorithms performs best with a value of around 0.04, so that each search

step expands 4% of the leaves of the search information.

It would be interesting to test the suggestion of Section 1.4 that it is

desirable for the degree of selectivity to increase during the course of search.

This could be done by modifying BP so that the gulp size varied according

to the number of nodes in the search information.

Another refinement to the ‘gulps’ method would be to vary the way in

which a leaf is expanded24. Leaves of the search information with higher QSS

24Russell and Wefald [72] report a significant strengthening of the MGSS* algorithm
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could be searched, in a single ‘expansion’, to greater depths, while those with

a lower QSS could be only partially expanded (i.e. some of their children

could be generated and appended to the search information). This offers

the possibility of a more reasoned way of tackling the problem of variable

selectivity than the previous suggestion. At the start of the search, its effect

might be expected to be similar, since the low conspiracy number of leaves

in a small tree would result in their high QSS.

Such an approach would benefit from the estimation of probability dis-

tributions for the expansion of nodes to varying depths, and so might be

expected to increase the overhead involved in deciding whether or not to

carry out a gulp of search. On the other hand, as well as increasing the selec-

tivity of each gulp, it would increase their size, and so it need not necessarily

entail an increase in the total burden of meta-calculations.

6.4 Estimation of Probability Distributions

The PSVB*, MGSS*, BP and PCN* algorithms make use of functions which

evaluate a position with a probability distribution. The purpose of these

distributions is to show how the evaluation is likely to change if further

search is carried out. Whilst the PSVB* algorithm obtains this distribution

via a rather obscure method involving the null move search, the more modern

algorithms all use the same method, which might be described as empirical

evaluation, or ‘training’.

when it was modified to partially expand nodes.
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Human experts originally suggest a number of (usually quite simple)

game-specific evaluation criteria known to be correlated with the winning

chances of a position, and a means of combining them to deduce a single

scalar score. Training proceeds by applying this evaluation function to a

board position. This is searched to a certain depth, and the backed up scalar

score of the position after the further search is noted. Once a large number

of independently sampled positions have been examined in this manner, it

is argued, the evaluation function will have a reliable probability distribu-

tion for each combination25. Russell and Wefald [70, 71, 72] used depth one

searches to deduce their probabilities, while Baum and Smith [6] recommend

empirical choice of the training depth.

One potential problem with this approach, in theory at least, is what we

call the representative positions problem. A set of positions taken from be-

ginners’ games will be very different, in general, from a set of positions from

expert play, and so the probability distributions may also be expected to

differ. Baum and Smith appear to have discovered this problem empirically.

Their solution is to use a two stage procedure. Firstly, the probabilistic ele-

ment of their algorithm is disabled, and games are played using only a static

evaluation function. Positions from these games are then used to calculate

distributions which are, in turn, used to gather another set of positions. The

25The number of training games required may be adjusted by dividing the space of

game positions up into a number of bins, according to the number and granularity of

these criteria.
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final probability distributions are then calculated with reference to the second

set of positions.

The fact that their description of this was relegated to a footnote suggests

that they did not find this to be a serious problem. They do not mention

why they stopped after two steps of this procedure — whether convergence

had been observed, or whether they were concerned about the possibility of

degeneration. Position evaluation is relatively easy for the games treated by

Baum and Smith (Kalah, Warri and Othello). For a game such as Go, for

which position evaluation is notoriously difficult, the representative positions

problem may prove a serious difficulty. Certainly, the theoretical problem

of how to ‘bootstrap’ a set of positions that are representative of how the

algorithm will play — when it has used the evaluation function derived from

that set — remains unaddressed.

6.5 Utility

The reason why the game tree is searched is that by application of the eval-

uation function, it is possible to distinguish the good from the bad branches,

and so guide both play and search.

For the purposes of guiding search, a static score is too simple a descrip-

tion of what search may reveal; a simple ordering of positions is not sufficient

to measure the importance of searching a node because of the complicated

effect of interactions with the scores of other nodes. We therefore require a

richer representation — i.e. a probability distribution — to represent belief
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about the possible consequences of search.

For the purposes of guiding play, a reasoned choice of move requires that

an ordering of positions exist. If the positions are scored with probability

distributions, the natural choice is its expectation. The only result of ulti-

mate interest is the outcome of the game, and so if the expectation of the

probability distribution is to be used in this way, it is essential that the scores

be calibrated to the expected reward from playing the game. The MGSS*

and BP algorithms carry out this calibration as explained in the previous

section. The failure of the PSVB* and Probabilistic B* algorithms to carry

out such a procedure is an omission no less serious just because they do not

use expectation to choose between moves.

It is not as simple as is generally believed to calibrate position evaluation

to something that might appropriately be referred to as ‘utility’ (i.e. proba-

bility of winning26), because of the complications raised in Chapter 2. Since

the whole notion of attaching a win probability to a particular position is a

simplification, problems are bound to occur if an attempt is made to exactly

define it in practice.

The notion of ‘utility’ is central to the MGSS* and BP algorithms. They

both make the simplifying assumptions that time cost is separable from the

position to which it is applied, and from the opponent against which they

play. Using L to stand for search information, they assume the following:

26The rest of this section makes the simplifying assumption that there are two only

outcomes, with rewards 0 and 1. This does not restrict the generality of the discussion.

190



U(L, τUs, Opponent, τOpponent, LOpponent) = V (L) + V (τUs)

The fact that the opponent’s search information, LOpponent, is unknown

is clearly a strong practical argument for ignoring it in the calibration. Sim-

ilarly, the case for ignoring the opponent in the calibration process is sup-

ported by the impracticality of having a separate training set for each op-

ponent, or the difficulty and degree of approximation required to determine

statistics able to summarise the range of possible opponents. Eventually,

programs will benefit from calibration according to both the opponent and

inference about the opponent’s search information. In the meantime, the

practical consequence from not taking into account the opponent’s strength

when calibrating the utility function is that the program will play inappro-

priately against an opponent of greatly different ability27. This is not a cause

for great concern, since the primary aim of current research into computer

game-playing is to devise programs that play as strongly as possible in even

games.

The easiest approximation to address in the calibration process is the

complete neglect of the opponent’s time. Since this is readily available, to

completely ignore it may seem rather slack but is in fact so standard as to

27For example, suppose a strong Chess program offered a beginner a queen’s odds. If

the utility function did not take the opponent into account, it would suggest that a loss

was almost certain. This would cause a problem similar to the horizon effect; the program

would play increasingly desperate and risky moves, in the hope that it had underassessed

its chances. By contrast, a human expert would expect the beginner to make simple errors,

and play accordingly.
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pass without comment in the discussion of computer game-playing28. Never-

theless, it is of use in determining human play, a fact which will be agreed by

any games player who has experience of playing under serious time controls.

The most immediate use of this information would seem to be its (cautious)

application to the area of time control, where it could be added in as another

factor to the rather ad hoc algorithms that are currently the norm. It seems

reasonable to vary the value of time in sympathy with the amount of time the

opponent has. The justification for this is that if the opponent has a lot of

time, this gives him the potential to think deeply about the position and so

cause complications (by playing trick moves etc.) which will cause us to run

short of time. Conversely, if the opponent has very little time, then either he

is in time trouble — which suggests we should look for such complications

— or else he has correctly judged that he will not need much more time, in

which case we have probably been too frugal up to now if we have a lot of

time left.

A more robust use of the opponents’ time would be to take it into account

when calibrating the evaluation functions. Attempting to equate a board

position with a win probability ignores the aspect of time control altogether,

limiting the effectiveness of time control. A more thorough approach would

use a population of games to derive a function U(L, τUs, τOpponent), which

might then be used for time control as well as move selection. The modelling

process can be aided by certain theoretical knowledge of the properties of

28I am not aware of any game-playing programs which use this information.
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U(). We require a smooth function which is increasing in τUs, decreasing in

τOpponent and — drawing upon the thoughts presented in Section 5.2 — that is

subharmonic in τUs and superharmonic in τOpponent. From a theoretical point

of view such a reasoned approach to time control would be greatly preferable

to the current crude approximations; from a practical point of view, it would

require a considerable increase in the computing power needed to calibrate

the utility function, would lead to a more complicated program and might

decrease the speed slightly, so computer game-playing may take some years

to reach the point where it becomes a priority.

Of the game-playing algorithms devised so far, BP has come closest to

defining a satisfactory model of utility. Inevitably, some sacrifices have been

made to expediency. One of these is the oversimplified time control mech-

anism highlighted above, which, by the authors’ own admission has ‘an an-

noying sickness’ [80].

Another shortcoming of BP is the strategy for leaf expansion. The ‘gulp’

idea is an important way of cutting down meta-calculation costs. However,

the notion of ‘gulp size’ is a rather imperfect implementation of it. No jus-

tification is presented for why the gulp should be a fixed proportion of the

information, much less a constant one. If QSS really is a good approxima-

tion to ‘utility’, a desirable goal would be to expand those leaves with the

largest QSS values, throughout the entire game. This would suggest that

an appropriate mechanism of leaf selection would be to expand in one gulp

all those leaves with a QSS value above a certain threshold. This threshold
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should be dynamic, changing in response to the findings of search. If time ran

short, if the game looked like taking longer than expected, or if the position

suggested that there would be many leaves with above average QSS ahead,

the threshold should increase. Conversely, it would decrease in the opposite

circumstances — the guiding principle should at every stage be the aim of

maximising expected ‘utility/unit of search’.

6.6 Trends in Computer Game-Playing

At the risk of stating the obvious, I hope that the reader is at this point com-

pletely convinced of the importance of quantifying the uncertainty around a

position’s static evaluation. This remark is by no means as trite as it may

appear to the reader with a statistical background, since this realisation has

taken the artificial intelligence community a very long time29. Almost all

the top game-playing programs have no such element, being basically alpha-

beta search engines with a selection of refinements such as those reviewed in

Section 1.1.

The explanation for this is simple. Research into game-playing has been

largely empirically-driven, and algorithms have not been developed in vitro.

The meta-calculation costs associated with the processing of probability dis-

tributions are very considerable as compared with point estimates, while

29If the research published on tree search and game-playing is any indication, it is only

just becoming widespread, almost 50 years after the notion of computer game-playing was

first mooted by Shannon [76].
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considerable computing power is required to realise the benefits of greater

selectivity. This alone, apart from their greater intricacy, is sufficient to ex-

plain why probabilistic selective search techniques have not, in the past been

in the mainstream of research. If they had been developed twenty years ago,

they would not have held their own against the sheer speed of non-selective

search algorithms.

One notable exception to the early concentration on ‘brute force’ methods

was the work of the statistician Good. His 1968 “Five Year Plan for Auto-

matic Chess” [30] would more realistically have been entitled a “Twenty

Year Plan”; even in the late 1980’s, when Russell and Wefald introduced

the MGSS* algorithm, they found it only to be comparable with fixed-depth

alpha-beta search30. The recent results of the BP program seem very en-

couraging, and so it seems as if, another 10 years on, selective searching has

finally come of age. Since the advantage of being selective increases with

the amount of computing power available, it will surely not be long before

even the most powerful alpha-beta program, running on specialist hardware,

will succumb to the greater intelligence of game-playing algorithms based on

selective search. If the reader will indulge me in a little prediction, I suggest

that by 2020, all computer game-playing programs will be Bayesians.

30Baum and Smith [6] have suggested that even this may have been an overoptimistic

assessment of its performance.
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6.7 Conclusion

This work has attacked the problem of computer game-playing from both

ends. At one extreme are the models introduced, which have a provably op-

timal solution, at least in some circumstances. At the other, I have included

some musings about the problem which inspired their development, that of

how a statistically-based game-playing program might work. As we have

seen, this problem does not have an optimal solution — in the classical sense

— so while I may be disappointed with the size of the gap between the two

extremes of study, I make no apology for its existence. I do hope that my

work has gone some way towards enlightening the reader about what may

be achieved by wider application of dynamic stochastic control methods to

the tasks of tree search and game-playing.

It seems appropriate to conclude with the remark that, both as a games

player and as a researcher, I find it a reassuring thought that it is impossible

to define an ‘optimal’ strategy for game-playing, and so this problem is one

which will remain permanently open.
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A Summary of Notation

di = (pi, ti, fi) Details of node type i.

fi Offspring distribution of node type i.

L = (L1, . . . , Ln) Search information.

Li = (hi, vi) Leaf i, with height hi value vi.

M(P ) Retirement reward function.

P Overall probability that an object exists.

pi = 1 − qi Probability node type i contains an object.

p∗i = 1 − q∗i Corrected probability of node type i.

p′i = 1 − q′i Probability of an object not in node i or its descendants.

p′′i = 1 − q′′i Probability of an object amongst the offspring of node i.

πi(x) Action taken by policy π at time i from state x.

ti Expected time to search node type i.

t∗i Corrected expected time of node type i.

V () Optimal payoff function.

Vπ() Payoff function from following policy π.

Xπ
τ State reached by policy π at time τ.

Yi Difference between the value of leaf Li and its daughters.

Øi = pi/ti Reward rate of node type i.

Ø∗
i = p∗i /t

∗
i Corrected reward rate of node type i.

〈F〉 No object is found, there are no descendants.

〈T〉 An object is found.
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B Implementation of PCN*

// PCN1.cpp Last Modified: 23/10/96 Probabilistic Conspiracy Numbers.
// (c) Robin Upton 1996
// Available from www.RobinUpton.com/research/phd/pcn1.cpp

class CPVector {
double _CP[NoDiscreteValues];
public:
double CP(int) const;
void Set_Cell(int, double);
CPVector();
};
class Node {
unsigned long _seed; /* Used to generate determined pseudo-random descendants. */
BoardPosn* _position;
long _depth;
int _score;
CPVector* _CPV;
Node* _parent;
int _childno; /* How this node is ordered in parent’s child[ ] array. */
Node* _child[MaxNoChildren]; /* Children ordered by score. */
long depth() const;
int childno() const;

void Add_child(Node*); /* used in Expand(). */
void Number_children(); /* used in Expand(). */
void Recalculate_CPvector();
void Updated_child(int); /* Percolates changes up the tree. */
int isbetter(int, int) const; /* > for MAX nodes, < for MIN nodes. */
int ispreferable_to(Node*) const; /* Compares score, and if necessary CPV().*/
public:
unsigned long seed() const;
BoardPosn* position() const;
int score() const;
CPVector* CPV() const;
double CP(int) const;
Node* up() const;
Node* child(int) const;
Node(BoardPosn*, Node*, unsigned long);
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void Con_search(int); /* Search and try to change score to (int) or more. */
void Expand(); /* Expands node with simple 1-ply search. */
void PCN_Expand(); /* PCN updating that follows a call to Expand(). */
int player() const;
};

extern long Search_Time=DefaultSearchTime;
extern unsigned long No_Nodes_Searched=0;

void main(int argc, char *argv[] ){
unsigned root_seed=1; /* Game tree variables. */
Node *best_kid, *pcn_root; /* PCN* variables.*/
long Last_Search_Time;
double cons_prob, most_likely_cp;
int best_nmrv, new_minrootvalue, overall_best_cn, best_cn_this_child, child_no;

pcn_root=new Node(new BoardPosn(ROOTSCORE),0,root_seed);/*Initialise the pcn search t
if (argc>1) Search_Time= atoi(argv[1]); /* Read the command line argument. */
Last_Search_Time= Search_Time;
pcn_root->PCN_Expand();

do {/* Select the most likely strategy, S.*/
best_kid=pcn_root->child(0);
most_likely_cp=best_cn_this_child=0;
for (new_minrootvalue=pcn_root->child(1)->score();

new_minrootvalue<=1+pcn_root->score(); new_minrootvalue++)
{/* Look at all new_minrootvalues between 1st & 2nd best node’s scores. */
cons_prob=child_no=0;

/* Search through the children other than the best one. */
while (pcn_root->child(++child_no)!=0)

if (pcn_root->child(child_no)->CP(new_minrootvalue)>cons_prob) /* Pick the best CP. *
{ best_cn_this_child=child_no;

cons_prob=pcn_root->child(child_no)->CP(new_minrootvalue); };
cons_prob*=best_kid->CP(new_minrootvalue-1);/* Root must also be degraded.
if (cons_prob>most_likely_cp)
{/* Update the details of the best conspiracy. */
overall_best_cn=best_cn_this_child;
best_nmrv=new_minrootvalue;
most_likely_cp= cons_prob; }

}/* We now know that the best conspiracy is one in which
/* pcn_root->child(0) conspires to worse than ‘best_nmrv‘
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/* pcn_root->child(overall_best_cn) conspires to better than or equal to ‘best_nmr
if (most_likely_cp > 0)
{pcn_root->child(overall_best_cn)->Con_search(best_nmrv);

best_kid->Con_search(best_nmrv-pcn_root->player());}
/* Use ’best_kid’, in case the children have been reordered. */

else {FILE* DebugF=fopen(DEBUGFILE,"a");
fprintf(DebugF,"Search ended due to impossibility of conspiracy.\n"
fclose(DebugF); break; /* Exit if the game is over. */ }

}
while (Search_Time>0);
}

void Node::Number_children()
{int c=0; for (c=0; c<MaxNoChildren && child(c)!=0; c++) child(c)->_childno=c; }

void Node::Recalculate_CPvector() {
double best_prob_yet, prob_so_far;
int childno, cellscore;
/* Calculate the CPV cells for the ’desired’ changes. */
for (cellscore=MINVALUE+(player()==MAX)*(NoDiscreteValues-1);
cellscore!=score(); cellscore-=player())
{best_prob_yet=0; childno=0;
do best_prob_yet=__max(best_prob_yet, child(childno)->CP(cellscore));
while (child(++childno)!=0);
CPV()->Set_Cell(cellscore,best_prob_yet);}

/* Calculate the CPV cells for the ’undesired’ changes. */
for (cellscore=MINVALUE+(player()==MIN)*(NoDiscreteValues-1);
cellscore!=score(); cellscore+=player())
{prob_so_far=1; childno=0;
do prob_so_far*= child(childno)->CP(cellscore);
while (child(++childno)!=0 && isbetter(child(childno)->score(),cellscore));
CPV()->Set_Cell(cellscore, prob_so_far);}

CPV()->Set_Cell(score(),1); /* Set CPV cell for the null change.*/
}

void Node::Updated_child(int child_no){/*called when _child[child_no] is updated.*/
Node* temp;
int newscore=child(child_no)->score();
while (child_no>0 && (isbetter(newscore, child(child_no-1)->score())))
/* Promote child(child_no).*/
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{ temp=child(child_no-1);
_child[child_no-1]=child(child_no);
_child[child_no]=temp; /* Swap the two node pointers around. */
child(child_no-1)->_childno--;
child(child_no)->_childno++; /* Update the _childno records. */
child_no--; };
while ((child(child_no+1)!=0)&&(isbetter(child(child_no+1)->score(),newscore)))

/* Demote child(child_no).*/
{temp=child(child_no+1);
_child[child_no+1]=child(child_no);
_child[child_no]=temp; /* Swap the two node pointers around. */
child(child_no)->_childno--;
child(child_no+1)->_childno++; /* Update the _childno records. */
child_no++; };

_score=child(0)->score(); /* Update the new score. */
Recalculate_CPvector();
// It is possible to reduce the complexity of Recalculate_CPVector()
// here, by making use of the parameter passed.
if(up()!=0)up()->Updated_child(childno());/* Percolate changes up the tree. */

}

int Node::isbetter(int i1, int i2) const { return player()*i1 > player()*i2; }
int Node::ispreferable_to(Node* N) const {
double margin=0; /* How much better "this" is than ’N’.*/
int celldiff=0;
if (isbetter(score(), N->score())) return 0;
if (isbetter(N->score(), score())) return 1;
do /* Scores equal, so we compare the cells of the CPV... */
{celldiff++;
if (score()+celldiff<=MAXVALUE)

margin-=player()*(CP(score()+celldiff)-N->CP(score()+celldiff));
if (score()-celldiff>=MINVALUE)

margin+=player()*(CP(score()-celldiff)-N->CP(score()-celldiff));
if (margin>0) return 1;else if (margin<0) return 0;}

while (score()+celldiff>MAXVALUE && score()-celldiff<MINVALUE);
return 1;/* Arbitrarily break ties against ’N’ if we’ve no more cells to compare.*/
}

unsigned long Node::seed() const { return _seed; }
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BoardPosn* Node::position() const { return _position; }
int Node::score() const {return _score; }
CPVector* Node::CPV() const { return _CPV; }
double Node::CP(int cell) const { return CPV()->CP(cell); }
Node* Node::up() const { return _parent; }
Node* Node::child(int childno) const { return _child[childno]; }
Node::Node(BoardPosn* b, Node* parent, unsigned long newseed ) {
int i;
No_Nodes_Searched++; /* Keep track of #nodes expanded. */

Search_Time--; /* Keep track of amount of time used. */
_seed=newseed;

_position=b;
_score=b->evaluate();
_parent=parent;
if (up()==0) _depth=0; else _depth=1+up()->depth();

_CPV=b->get_ppd(player());
for (i=0; i<MaxNoChildren; i++) _child[i]=0;
}

void Node::Con_search(int target) {
/* Picks conspiracy most likely to achieve score ’target’ or more. */
int child_no=0;
if (score()!=target) /* The target is not achieved - so conspire... */
{if (child(0)==0) PCN_Expand(); /* We are at a leaf - expand. */
else if (isbetter(target, score()))
/* Desirable change. Pick the node with the highest consp. prob. */
{while (CP(target) > child(child_no)->CP(target)) child_no++;
child(child_no)->Con_search(target);}
else /* Undesirable change. */
{do child(child_no)->Con_search(target);
/* All nodes with a score > target need to conspire. */
while (isbetter(child(child_no)->score(), target) && child(++child_no)!=0);};
}

}

void Node::PCN_Expand(){/* Expands node and recalculates CPVector as appropriate. */
Expand(); /* First expand the node. */
Number_children(); /* Order them appropriately. */
_score=child(0)->score(); /* Get the new score first... */
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Recalculate_CPvector(); /* then the new CPVector. */
if (up()!=0) up()->Updated_child(childno()); /* Percolate stuff up the tree. */

}

void Node::Expand() { /* Expands node, with a 1-ply search. */
int child_no=0;
BoardPosnArray* childboards=position()->get_kids(BRANCHINGFACTOR, seed());
while (child_no<MaxNoChildren && childboards->posn(child_no)!=0)
{Node* new_child=new Node(childboards->posn(child_no),this,next_seed(seed(),child_no)
Add_child(new_child); /* Add the extra child.*/
child_no++; }

}

int Node::player() const { return 1-(int)(2*(depth()%2));}
double CPVector::CP(int cellscore) const { return _CP[cellscore-(MINVALUE)];}
void CPVector::Set_Cell(int cellscore,double value){_CP[cellscore-(MINVALUE)]=value;}
CPVector::CPVector() {int i; for (i=0; i<NoDiscreteValues; i++) _CP[i]=0; }
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C Model Enumeration Program

// XGTSM.cpp Last Modified: 7/5/97
// (c) Robin Upton 1997
// Available from www.RobinUpton.com/research/phd/xgtsm.cpp

// Model Default Parameters
#define default_K 10.0 #define default_Va 1.0
#define default_Vb 1.0 #define default_Pa 0.1
#define default_Pb1 0.1 #define default_Qb 0.1
#define default_U_threshold 0.5 /* This is not relevant for U_type=1. */
// Internals.
#define U_type 2 /* Selects type of retirement utility function. */
#define tolerance 0.00000000001 /* Needed to avoid round-off errors. */
#define noactions 3 /* Search A, Search B, Retire */
#define maxsize 51
#define infinity 999999
void calculate_V(int, int);
double U(int, int);
static double result[maxsize][maxsize][noactions];
static char policy[maxsize][maxsize]; static char pdisplay[noactions+2];
double K=default_K; double U_threshold=default_U_threshold;
double Va=default_Va; double Vb=default_Vb;
double Pa=default_Pa; double Pb1=default_Pb1;
double Qb=default_Qb; double Qa,Pb2;
int main(int argc, char* argv[])
{int a_target, b_target, i, j, k;
time_t ltime; time( &ltime );
//********* SET UP THE GLOBALS TO THE RIGHT VALUES *******
pdisplay[0]=46; /* ’.’ ~ Retiring is optimal. */
pdisplay[1]=97; /* ’a’ ~ Searching A is optimal. */
pdisplay[2]=98; /* ’b’ ~ Searching B is optimal. */
pdisplay[3]=61; /* ’=’ ~ both searches are equally good. */
pdisplay[4]=32; /* ’ ’ ~ policy not defined. */
for (i=0; i<maxsize; i++) for (j=0; j<maxsize; j++)

for (k=0; k<noactions; k++) result[i][j][k]= -1;
for (i=0; i<maxsize; i++) for (j=0; j<maxsize; j++) policy[i][j]= 4;
for (k=0; k<noactions; k++) result[0][0][k]=0; policy[0][0]=0; /* Set up (0,0). */

204

http://www.RobinUpton.com/research/phd/xgtsm.cpp
Administrator
www.RobinUpton.com/research/phd/xgtsm.cpp



// **************** INPUT MODEL PARAMETERS **************
if ((argc <=2)||(argc>10)||(a_target=atoi(argv[1]))<0||(b_target=atoi(argv[2]))<0)
{cout<<"Usage: "<<argv[0]<<

" <#A nodes> <#B nodes> \n[[[[[[[K] U_threshold] Va] Vb] Pa] Pb1] Qb]\n";return 1;}
if (a_target+b_target>=maxsize){cout<<

"#A nodes + #B nodes may not exceed "<<maxsize-1<<".\n"; return 1;}
switch (argc)

{ case 10: Qb=atof(argv[9]); case 9: Pb1=atof(argv[8]);
case 8: Pa=atof(argv[7]); case 7: Vb=atof(argv[6]);
case 6: Va=atof(argv[5]); case 5: U_threshold=atof(argv[4]);
case 4: K=atof(argv[3]); default:/* No parameters set. */; }

Qa=1-Pa;
Pb2=1-Pb1-Qb;
if (Qa<=0 || Pb2<0 || Va<0 || Vb<0|| K<0|| Pa<0||Pb1<0||Qb<0 )

{cout<<"Bogus parameters!"; return 1;}
// **************** OUTPUT MODEL PARAMETERS ***************

printf("=========================================================================\n")
printf("Output from %s run on %s", argv[0], ctime( &ltime ) );
printf("=========================================================================\n")
printf("K=%.3f, Va=%.3f, Vb=%.3f, Pa=%.3f, Pb1=%.3f, Qb=%.3f\n",K, Va,Vb,Pa,Pb1,Qb);
printf("Utility function type=%i",U_type);
if (U_type>1) printf(" U_threshold=%.3f",U_threshold);
printf("\n=========================================================================\n
calculate_V(a_target, b_target);
// ****** GRAPHICAL DISPLAY OF THE OPTIMAL POLICY *********
printf("\n "); for (i=0; i<=a_target+b_target; i++)

{if (i>10) printf ("%i", i/10); else printf(" "); }
printf("\n "); for (i=0; i<=a_target+b_target; i++) printf ("%i", i%10);
for (j=0;j<=b_target;j++)
{ printf("\n%2i: ", j);

for (i=0; i<=a_target+b_target; i++) printf("%c", pdisplay[policy[i][j]]);
}

printf("\n"); return 0;
}

void calculate_V(int a, int b) {
if (a+b>0)
{/* Recur if we’ve not already calculated the values we need. */
if (a>0 && policy[a-1][b]==4) calculate_V(a-1, b);
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if (b>0 && policy[a+1][b-1]==4) calculate_V(a+1, b-1);
if (b>0 && policy[a][b-1]==4) calculate_V(a, b-1);
/* Set the result values. */
result[a][b][0]=U(a, b);

if (a==0) result[a][b][1]=infinity; /* Value from searching A. */
else result[a][b][1]=Va+Qa*result[a-1][b][__min(2, policy[a-1][b])];

if (b==0) result[a][b][2]=infinity; /* Value from searching B. */
else result[a][b][2]=Vb+Pb2*result[a+1][b-1][__min(2, policy[a+1][b-1])]

+Qb*result[a][b-1][__min(2,policy[a][b-1])];
/* Set the optimal choice of action. */
if (result[a][b][0]<__min(result[a][b][1], result[a][b][2])) policy[a][b]=0;

else if (result[a][b][1]+tolerance < result[a][b][2]) policy[a][b]=1;
else if (result[a][b][1] > tolerance +result[a][b][2]) policy[a][b]=2;
else policy[a][b]=3; /* Search ’A’ or ’B’ */

}}

// Utility Function... (Must have U(Having found an object for sure)==0.
double U(int a, int b) {
double prob_of_failure=(pow(Qa,a))*(pow(Qb+Pb2*Qa,b));
/************ Utility Functions I Have used ***********************/
switch (U_type+0){case 1: return K*__min(prob_of_failure, 1-prob_of_failure);

case 2: return K*(prob_of_failure<U_threshold);
case 3: return K*(prob_of_failure>U_threshold);

}
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