
4 AND-OR Tree Search

To grasp the notion of an ‘AND-OR tree’ we recall how the ‘OR-tree’ search

problem of the previous chapter can be envisaged as an investigation into

the truth of a logical expression. In this chapter we address a more general

problem than that of the previous one, by redefining the class of logical

expressions to be those which include L iff it satisfies one of the following:

1. L is a logical primitive.

2. L ≡ (X ∪ Y ), where X and Y are both logical expressions.

3. L ≡ (X ∩ Y ), where X and Y are both logical expressions.

4. L ≡ Xc, where X is a logical expression.

The symbol ‘∩’ represents the customary binary Boolean ‘AND’ operator,

and ‘c’ the unary Boolean ‘NOT’ operator, both defined as usual. Any logical

expression L can be written as a tree, with the internal nodes as ‘c’, ‘∩’ and

‘∪’ operators, and the leaves as logical primitives. There are a variety of

normal forms for representing logical expressions as defined above, of which

I have found one particularly clear, because it emphasises the similarity with

the OR-Tree model. It uses the following equivalence:

X ∩ Y ≡ (Xc ∪ Y c)c

We shall also exploit the associative property of the ‘∪’ operator, and so

all the logical expressions in this chapter will appear in a form without

137



‘∩′ operators, and with alternate levels of ‘∪’ and ‘c’ operators. For ex-

ample, the logical expression (A ∩ Bc) ∩ (C ∪ D) would be transformed into

(Ac ∪ B ∪ (C ∪ D)c)c, represented in the below figure.

Figure 26: Sample Representation of (Ac ∪ B ∪ (C ∪ D)c)c

Whilst it is well known that any such logical expressions can be trans-

formed to one which has only the single operator ‘NAND’, this representation

is not useful for our purposes. This is because the economy of operators is

achieved by duplicating the logical primitives (e. g. Ac ≡ (A NAND A),

which brings more serious problems of its own17.

17Since the two A’s in the above example correspond to a single node, they share a

single expansion. This representation would therefore enforce a dependence structure

138



4.1 Deterministic Case

By way of introduction we first consider the case in which the logical primi-

tives are boxes. This problem was first addressed by Joyce [35]. The optimal

policy may be efficiently deduced in time proportional to the overall length

of the logical expression by working backwards from the tree which repre-

sents it. The leaves are simple logical primitives. Iterative application of the

two steps below suffices to transform an arbitrary logical expression into an

OR-tree of depth one which can then be solved in the fashion described in

the Section 3.1:

1. Sibling chunking: This applies to logical expressions of the

form L = l1 ∪ l2 ∪ . . . ∪ lN , where each li is a simple logi-

cal primitive. This is an example of the boxes case of Sec-

tion 3.1, so the optimal policy is to search the li in decreasing

order of Øi. Assuming the node types are ordered by Ø, so

that Øi ≥ Øj for i < j, we have the following formulae for

tL, the expected time taken to determine the truth of L, and

for pL, the probability that L is true:

tL =
N∑

i=1

ti
i−1∏
j=1

qj pL = 1 −
N∏

i=1

qi

between the logical primitives which violates the fundamental assumption, that each logical

primitive is a single search opportunity which may be explored independently of all the

others.

139



Thus, the compound expression, l1 ∪ l2 ∪ . . . ∪ lN can be

represented by a new simple logical primitive, L, with details

dL = (tL, pL).

2. ‘Complement’ Removal: This applies to logical expressions

of the form Lc, where L is a simple logical primitive. We

replace Lc by a new simple logical primitive, �L, with t�L = tL,

p�L = 1 − pL.

4.2 Stochastic Case

We now increase the scope of the model to cater for a more general class

of logical primitives. We assume that, upon search, each logical primitive

may expand to any logical expression, according to a known distribution.

This requires an extension of the notation used for the OR-tree model, since

the space of logical expressions which include ‘∪’ as well as ‘c’ cannot be

summarised in the same fashion by a finite length vector. As an introduction

to this extra notation, consider the node of type A, defined below:

dA = (
1

3
, 9,

1

2
+

1

4
sA +

1

8
s2

B +
1

8
sAs2

B)

We represent this as follows:

A[9] =


 〈T〉 〈F〉 A B1 ∪ B2 A ∪ B1 ∪ B2

1
3

1
3

1
6

1
12

1
12




The special elements, 〈T〉 and 〈F〉 correspond to ‘true’ (an object is

found), and ‘false’ (no object is found, and there are no descendants). We

140



shall use this form of notation wherever necessary — that is, wherever a

search may give rise to an expression with a ‘c’ or ‘∩’ constructor.

As defined above, the model encompasses some problems for which the

notion of ‘optimal policy’ is ill-defined. Consider, for example, the node type

below:

A[1] =


 〈T〉 〈F〉 (A1 ∩ A2) ∪ (A3 ∩ A4)

ε ε 1 − 2ε




For ε = 0, the truth of A is obviously undecidable, since it will never ex-

pand to 〈T〉 of 〈F〉. For small enough positive ε, there is non-zero probability

of the expression being undecidable, as can be understood from thinking of

the search of A as a branching process. Such expressions, where the expected

number of searches of the optimal policy is infinite, we term intractable, and

do not address further.

Another class of expressions require only a finite number of searches, but

may nevertheless be searched ad infinitum. As an illustration, consider the

degenerate node type X, defined below:

X = (A ∪ B) A[1] =


 A

1


 B[1] =


 〈T〉

1




141



4.3 Nature of the Optimal Policy

Fundamental to the simplicity of the stochastic OR-tree search model is the

fact that results from one part of the search tree have no influence upon how

it is optimal to explore other parts of the tree. This might seem to be a simple

consequence of the independence of each individual offspring distribution, but

this is a necessary, not a sufficient condition for this property. In addition to

this there must also be a simplicity of structure of the search model. This is

satisfied in the stochastic OR-tree search model, since it is possible to deduce

whether or not the goal has been met by looking at each leaf in isolation. (If

an object has been discovered at any of them, it has!)

This simplicity of structure means that each part of the tree can be con-

sidered in isolation, and implies that there is an optimal policy within the

class of pre-empt/resume policies. This class contains policies that dynami-

cally choose which parts of the tree to search, but not how to search them.

An obvious first question when addressing the general stochastic AND-OR

tree search problem is whether there is a pre-empt/resume policy which is

optimal.

Figure 27 overleaf shows two different search problems which include the

sub-search of the expression Y , illustrating why a pre-empt/resume policy is

not necessarily optimal. Suppose that there are two alternative policies for

searching Y . Policy π1 allows for a quick and relatively accurate judgement

to be made about whether or not Y is true. Policy π2 by contrast does not,

but determines the truth in less time, on average.

142



Figure 27: Different Requirements for Searching Y

Policy π2 is to be preferred in case (2), but not necessarily in case (1).

The reason for this is that the ‘intermediate information’ associated with

policy π1 is of use in case (1), since it may show that switching to search one

of the Xi expressions is preferable to further search of Y . In this way, the

expected time to search the overall expression can be reduced.

An example of an expression Y for which two such search policies exist

is as follows:

Y = (A ∪ B) X = (Y c
1 ∪ Y c

2 ∪ . . . Y c
N)

The following node types are defined:

dA =
(
0, 1,

1

2
sB +

1

2
sC

)
dB =

(
99

100
, 10, 1

)
dC =

(
1

2
, 10, 1

)

We must search one of the identical Yi, so for definiteness assume we

search Y1. The decision to be made is therefore whether we search A1 or B1.

A little reflection on the problem will suffice to show that the optimal choice

143



Figure 28: Pre-empt/Resume Counterexample

depends upon the value of N , thus violating non-locality and implying that

optimal play cannot in general be a pre-empt/resume policy.

As N → ∞, the probability that X is true tends to 1, and the value of

refuting a single Y c
i tends to zero. The aim of search must therefore be to

prove a Y c
i to be true, thus proving X to be true and allowing termination

of the search. This is equivalent to refuting a Yi. Bearing this in mind, it is

better to start search of a Yi by an exploratory search of Ai. If this shows

the Yi to be equivalent to Bi1 ∪ Bi2 , it is optimal to ‘retire’ from this Yi

and choose another, until a Yi is discovered that is equivalent to Bi ∪ Ci, an

144



expression which is 50 times more likely to be false, and so more worthy of

investigation than Bi1 ∪ Bi2 .

Now consider the opposite extreme, N = 1. In this case, a refutation of

Y c
1 will terminate the search, showing X to be false. This can be achieved

with probability 99
100

by search of B1. Search of A1, by contrast, offers no

immediate chance of terminating the search, and, whatever node it reveals,

the best node to search next will be B1.

To recap, we find that there is no single answer to the question “How is it

optimal to search the sub-expression Y1?”; if it has no siblings, it is optimal

to begin by searching B1, while if it has many siblings, it is optimal to begin

by searching A1.

4.4 Non-optimality of Index Policies

The counterexample described in the previous section demonstrates that the

AND-OR tree search problem cannot be solved by an index in the same way

that the OR-tree search problem can be solved by calculating Ø(). We now

examine the possibility of treating an AND-OR tree as an OR-tree of depth

one with an infinite number of node types.

We see that an AND-OR tree can be written (Y1 ∪ Y2 . . . Yn)c, as shown

in Figure 29. The presence or absence of a ‘c’ makes no difference to the

fundamental conception, which is to extend the result of the Chapter 3 by

dealing with each of the Yi’s as if it were a simple logical primitive as opposed

to a compound logical expression. In general, this requires that there be a

145



Figure 29: Viewing an AND-OR Tree as an OR Tree

countably infinite number of node types, since each Yi may be an arbitrar-

ily complex AND-OR expression. Even in the special case in which the Yi

cannot become arbitrarily complicated, but can be transformed by search

into one of only a finite number of terms, we show by considering the pre-

empt/resume counterexample of the previous section that this concept still

presents problems.

To represent X as an OR expression, we need a state for each logical

expression to which search of the Yi can lead. For clarity, we index these

146



states numerically:

s1 = Cc s4 = (B ∪ C)c

s2 = Bc s5 = (B1 ∪ B2)
c

s3 = Ac s6 = (A ∪ B)c

The expression Y therefore corresponds to a node of type 6, so state

(0, 0, 0, 0, 0, 1), whilst X corresponds to state (0, 0, 0, 0, 0, n). The node types

have the following characteristics:

d1 =
(

1
2
, 10, 1

)
d2 =

(
1

100
, 10, 1

)
d3 =

(
0, 1, 1

2
s1 + 1

2
s2

)
d4 =

(
0, 10, 99

100
+ 1

100
s1

)
or

(
0, 1, 1

2
s5 + 1

2
s6

)
d5 =

(
0, 10, 99

100
+ 1

100
s2

)
d6 =

(
0, 10, 99

100
+ 1

100
s3

)
or

(
0, 10, 1

2
+ 1

2
s2

)

This problem is not yet in a form soluble by the OR-tree search model

because of node types 4 and 6, which may be expanded in more than one

way. In practice, since this example is small, dynamic programming can

be used to deduce the optimal policy. Whilst a general solution seems an

unlikely prospect, use of points made in Section 3.9 may prove sufficient to

allow an ad hoc solution by dynamic programming to some specific classes

of problems.

147



4.5 Summary

The AND-OR model described above is a powerful one, capable of appli-

cation without modification to the task of (bi-valued) game tree searching.

Unfortunately, it does not seem to be an easy task to deduce an optimal

policy.

An important observation about the AND-OR tree search case is that

the optimum policy is not a pre-empt/resume policy. The non-locality of the

optimum policy, together with the observation that no one has yet come close

to solving this problem strongly suggest to me that aiming for a method of

deducing a strictly optimal policy may, in the general case, be an unrealis-

tic goal. A more fruitful approach may therefore be to pursue methods of

deducing a policy which is both easily computable and ‘nearly optimal’, in

some sense.

A final, important, point which deserves to be made is a consequence of

the fact that knowledge of whether or not an object exists affects the optimal

policy. Given that an object exists, a simple Ø-based policy can be used, not

to direct all the search, but simply to choose which top level branch it is

optimal to search. An admittedly speculative example of how this might be

used is the assumption that might be made by a game-playing program that

somewhere in the game tree it is searching, a winning variation does indeed

exist.

148


	Dynamic Stochastic Control - A New Approach to Game Tree Searching, by
	Robin Upton
	4 AND-OR Tree Search
	4.1 Deterministic Case
	4.2 Stochastic Case
	4.3 Nature of the Optimal Policy
	4.4 Non-optimality of Index Policies
	4.5 Summary



