
6 Computer Game-Playing

This chapter considers how the results so far established may be applied to

the area of computer game-playing, as well as giving my personal views on

the subject. Its tone is intended to be slightly less formal than previous

chapters, since the problems tackled are bigger and more open-ended. We

put this discussion in context by highlighting the tension between what is

‘optimal’ — in the dynamic stochastic control sense — and what is desirable

in a practical sense. The remaining sections then outline, in varying degrees

of detail, some new approaches to game tree searching and game-playing.

6.1 Optimality and Limited Rationality

The recent paper of Baum and Smith [6] summarises as follows the dilemma

facing those who struggle for provably optimal policies in the field of com-

puter game-playing:

“One could . . . in principle, attempt a catalog of all leaf expansion

strategies for any given game tree with a fixed number of leaves.

If we could do vast computations offline, we could pinpoint one

such strategy as optimal. But to be meaningful in practice, any

“optimal” strategy must take into account its time cost (if we

spend less time deciding which leaves to expand we can expand

more leaves), and also the interaction of one leaf expansion with

future expansion decisions. We know of no tractable approach to

171



computing a provably “optimal” strategy. Since we don’t know

how to compute efficiently the exact decision theoretic utility of

expanding leaves, we search for a useful approximation.”

The result of Section 5.4 can be seen as a partial solution to the problems

raised above, in that, by application of standard dynamic stochastic control

methods, we have calculated the exact decision theoretic utility of expanding

a leaf in a simple search game. However, this ignores the problem of lim-

ited rationality mentioned above; although the policy we have calculated is

optimal — in the standard sense — we have no guarantee that it is useful

in a practical sense. Since the dynamic stochastic control model takes no

account of its deliberation time, there must always be a question mark over

the practical feasibility of solutions adjudged to be ‘optimal’ on such a basis.

The way in which dynamic stochastic control has been used so far in this

work is to deduce optimal policies for a range of simple games. These studies

are intended to yield insight into the game-playing problem, and so lead on

— directly or indirectly — to more complicated and powerful models.

Another way in which dynamic stochastic control might be applied to

game-playing is to look for policies that are optimal within a certain class,

such as the work done by Smith [79]. One might wish, for example, to

choose a particular subclass of those tree search policies which are effectively

implementable — for example, one which is O(n) in the number of leaves

searched. In this way one could ensure the feasibility of such optimal policies

as were deduced. The success of such an approach would seem to rest entirely

172



upon an insightful choice of subclass.

Such an approach again stops short of tackling the fundamental problem

of limited rationality. More powerful and more challenging still would be a

framework which provided the means to show a policy to be optimal inclusive

of its own deliberation costs, presumably with reference to some standard

computer architecture. This would represent a very significant extension

of standard dynamic stochastic control theory in the direction of computer

science.

6.2 Conspiracy Probabilities

In their recent paper on probabilistic B* search, Berliner and McConnell [16]

report the failure of their attempts to combine B* with the conspiracy number

search algorithm. They summarise their conclusions as follows (italics in the

original):

“[Berliner] quickly found out . . . something very important about

why conspiracy number search has not worked. While it is useful

to think of conspiracies in the above way, and to plan to attack

the conspiracy with the fewest conspirators, in practice this does

not work. Conspiracies fall into buckets. There are buckets of

conspiracies of magnitude 1, of magnitude 2, magnitude 3, etc.

In Chess (and we would assume in almost all domains), there are

lots of potential conspiracies, and the number of conspiracies of

173



magnitude 2 is usually quite large. Thus, when dealing with con-

spiracies of magnitude 2, one must examine them in some quasi-

random order, and the chances of finding the conspiracy that is

easiest to break is quite small. It is like a breadth-first search of

conspiracies, with no other clue as to what might make a given

conspiracy easy to break. This is the reason for the failure of the

conspiracy approach in game-playing. There is no good method

for deciding the weakest conspiracy of a given magnitude.”

This is a significant objection to the conspiracy number search as de-

scribed in Subsection 1.2.2; the implicit assumption in ‘conspiracy number’

that all nodes are equally likely to conspire is a serious limit to the efficiency

of such a search. The successes of such simple methods as singular extensions

and the null move are a testimony to how easily the most uncertain posi-

tions can be distinguished. It is therefore desirable to use such probabilistic

information as is available. Subsection 3.4.2 shows how, in the two-valued

case, this can be done optimally for conspiracies of size one by application

of the stochastic OR-Tree model of Chapter 3. One step further down this

road is to abandon altogether the notion of conspiracy ‘number’ in favour of

the notion of conspiracy ‘probability’. We now examine how this might be

achieved, and reflect on some of the barriers to be overcome if such a scheme

is to be developed into a practical selective search algorithm.

174



6.2.1 A Redefinition of Conspiracies

The child of root with the highest backed-up score we term the provisionally

best move, and its score the provisionally best score. This is the move we

make if no further search is carried out, so defines the utility of moving

immediately from a position.

The original definition of a ‘conspiracy’ is described in Subsection 1.2.2.

It refers to a minimal set of leaves which always has a chance of changing

the provisionally best score. We note that not all such changes cause a

change to the provisionally best move. This is a matter of importance to

any algorithm which makes the Meta-greedy and Single-step Assumptions of

Subsection 1.2.6, which are important ones on grounds of tractability. The

reason is that the conjunction of these assumptions implies that unless a

search has a chance of changing the provisionally best move, it has no value,

and so the original definition of ‘conspiracy’ includes some sets of nodes which

will never be of interest.

McAllester [50] originally detailed two categories of conspiracy, ‘Prove

Best’ and ‘Disprove Rest’ strategies, as follows:

1. Sets of nodes that may decrement the score of the provision-

ally best move, so that it assumes a lower value than that

of another move.

2. Sets of nodes that may increment the score of another move,

so that it exceeds that of the provisionally best move.

175



We desire to include the following additional category to include those of

the kind shown in the figure below, which were not originally included:

3. Sets of nodes which may decrease the provisionally best

move’s score and increase that of another move to exceed

it.

Figure 35: Moves 0 and i Conspire to Change the Provisionally Best Move

We now redefine the term conspiracy. We have previously defined a tree’s

conspiracies to mean a set of nodes which, if they were to assume different

176



scores (as a result of search) could together effect a change to the backed-up

score of that tree’s root node. We now introduce the idea of a conspiracy to

change the provisionally best move. This is similar to the above definition

except that, rather than changing root’s score, the effect of the nodes’ coor-

dinated change is to change the tree’s provisionally best move. This redefi-

nition excludes those conspiracies which have no value under the single-step

assumption, and includes the third class omitted by McAllester [50].

Assuming the children of root are ordered so that child 0 is the provi-

sionally best move, and that move i has score si, a general form for such a

conspiracy is (i, K), where i is the number of the move that conspires to as-

sume a value ≥ K while move 0 conspires to assume a value of < K. Type 1

conspiracies may thus be expressed (1, s1), and type 2 conspiracies (i, s0 + ε),

where i is the move involved and ε the granularity of the evaluation function.

6.2.2 Ø-based Approximation Methods

The reward rate principle may be applied to the task of choosing a conspiracy

in the following straightforward way. Each node of the search information

is given a p and a t value with meanings analogous to the boxes case. For

leaves, t, the expected time to expand each node of the conspiracy, is simply

1, while the probability that the conspiracy will change that node’s value

may be deduced directly from the prior distribution for expansion of that

node.

For internal nodes of the search information with a negamax backed-up

177



score of 1, all its daughters of value -1 must conspire, so the p and t values

are calculated from their daughter nodes as follows:

proot =
n∏

i=1

pi

troot =
n∑

i=1

ti

The case in which an internal node is scored with a negamax backed-up

score of -1 requires only a single daughter to conspire, and so the efficiency

of the search centres around how this choice is made. The naive Ø-based

approximation chooses the daughter with the greatest Ø value:

proot = pi∗

troot = ti∗
where i∗ ∈ {1 . . . n} maximises

pi

ti

We now consider how to percolate these p and t values back up the tree.

In order to search efficiently for a conspiracy, we need to seek out those

conspiracies with as large a p value and as small a t value as possible. We

now extend this principle, in a straightforward fashion, to the task of choosing

which daughter to search from a ‘-1’ node. Defining Øi = pi/ti as before,

suppose that, from a ‘-1’ node, we will select the daughter which maximises

Ø. This approach does not lead necessarily to choosing the overall conspiracy

which maximises Ø, as we shall see from the following example.

Suppose that we are investigating the tree shown overleaf in Figure 36.

The values shown beneath the nodes Q, S, and T, are the p and t values

of these nodes. Since ØS = (.1/1) > (.5/6) = ØT, S is deemed the most

promising descendant of R to search for a conspiracy. Hence, R is scored

178



Figure 36: Inefficiency of Ø-based Approximation Method

(.1,1) and so P is scored (.05, 25). This leads to investigation of conspiracy

{Q, S} which has a reward rate of 0.002. The optimal minimal conspiracy

{Q, T}, has score (.15, 28), and so a reward rate of 0.0083̇. This example

illustrates the problem that the overall reward (1 − Πq)/Σt cannot be max-

imised simply by maximising the individual p/t ratios of the subconspiracies.

This problem is most severe for trees in which there is considerable variation

between conspiracy t values.

A ‘perfect’ solution would require a catalogue of all the p and t values of

179



the conspiracies possible below a node. This would require large overheads,

both in terms of meta-calculation and in storage. Since the space required

to store the tree would be super-linear in n, the number of nodes in the tree,

we discard this approach as infeasible.

A simple compromise which reduces inefficiencies associated with a poor

choice of conspiracy whilst increasing resource usage by only a constant factor

would be not to store all the possible conspiracy details at a node, but to

store up to a certain fixed number.

In fact, since there are different percolation formulae for ‘1’ nodes and

‘-1’ nodes, it may well be efficient to store the details of different numbers

of conspiracies for odd and for even depths of the tree. The motivation for

storing a set of p and t values is to enable a better choice to be made about

which conspiracy we wish to search, and so it is also reasonable to store more

conspiracies for nodes higher up the tree (particularly the daughters and

granddaughters of root), since these nodes have the largest range of possible

conspiracies from which to choose. One way of visualising the approximation

which is going on is to consider Figure 37, overleaf, which shows (a continuous

approximation of) the profile of available conspiracies available from a node.

A simple example of how this approach would work is to store at each

node the p and t values of two conspiracies. A natural approach would be to

chose the conspiracy with the largest p value and the one with the smallest t

value, (p1, t1) and (p3, t3) in Figure 37. A choice between these two extremes

could therefore be made at the top level ‘1’ node in the tree. If the overall

180



Figure 37: Range of Possible Conspiracies

reward rate of the conspiracy chosen in this manner was still too low, it

could be improved by the storage of the details of more conspiracies. As the

diagram shows, if details of a third conspiracy were stored at each node (say,

that with the greatest Ø value) this would have an intermediate position,

although it would not necessarily be the most probable conspiracy of its size.

6.2.3 PCN* Search

We consider a simpler selective tree search technique, PCN*, which is based

upon conspiracy number search, but which searches conspiracies in order of

probability, p, rather than reward rate, Ø. This is a less ambitious goal than

attempting to select conspiracies based upon the p and t values. However,

since the most likely conspiracy will tend — all other things being equal —

181



to be the one with the fewest nodes, and hence the cheapest to evaluate, this

approximation may not be as crass as its simplicity would suggest.

We now explain briefly how it works, with the help of an example. The

nodes of the tree each have a scalar score, amongst which the usual minimax

relationship holds. We assume that the scores take integral values from 1

to m. In addition, every node has a conspiracy probability vector (c.p.v.),

which details the probability with which this score can be changed by the

investigation of a conspiracy amongst its children. Using C to stand for a

single conspiracy, and C for the set of conspiracies, the c.p.v. is defined as

follows for a node i with scalar score vi:


pi
1 = maxC∈C{P [C will cause this node to have score = 1]}

pi
2 = maxC∈C{P [C will cause this node to have score ≤ 2]}
...

pi
vi−1 = maxC∈C{P [C will cause this node to have score ≤ vi − 1]}
pi

vi
= 1

pi
vi+1 = maxC∈C{P [C will cause this node to have score ≥ vi + 1]}

...

pi
m−1 = maxC∈C{P [C will cause this node to have score ≥ m − 1]}
pi

m = maxC∈C{P [C will cause this node to have score = m]}




The definition of pi
vi

can be motivated by expanding the concept of con-

spiracy to include the ‘null conspiracy’, which effects no change to a node’s

score with probability 1. This has the useful consequence that a node’s pi
vi

value can be interpreted in harmony with both pi
vi−1

and pi
vi+1

.

182



Figure 38: Example Conspiracy Probability Vectors

The above figure shows an example tree with conspiracy probability vec-

tors, where m=4. Nodes C, D and E are leaves of the search information,

and so their c.p.v.’s indicate the values that these leaves would take if ex-

panded, which may be determined by the method of empirical evaluation

described in Section 6.4. The c.p.v.’s of the internal nodes are percolated

up from their daughters according to the formulae overleaf. These assume

that a node has n daughters, which are ordered by their scalar score, so that

183



v1 ≥ v2 ≥ . . . ≥ vn. For succinctness of expression, it will be useful to define

two extra values, v0 = 1 and vn+1 = m.

For max nodes : For min nodes :

pparent
j =




k∏
i=1

pi
j

∣∣∣vk ≥ j ≥ vk+1

max
i

{pi
j}

∣∣∣v0 ≥ j ≥ v1

pparent
j =




max
i

{pi
j}

∣∣∣v0 ≥ j ≥ v1

k∏
i=1

pi
j

∣∣∣vk ≥ j ≥ vk+1

To see how this works in practice, suppose node D was expanded, and

its c.p.v. was calculated (by percolating up from those of its daughters) to

be (.2, .4, 1, .2). Application of the formulae above yields a new c.p.v. for

B of (.3, 1, .4, .04). Note that the only element to have changed is pB
4 , the

probability of a conspiracy causing the value of B to rise to 4. This being so,

it is a trivial consequence of the percolation formulae that the only element of

the c.p.v. of A which may change is pA
4 . In fact, a glance at the formulae show

that pA
4 remains unchanged, since C was more likely to conspire to achieve a

value of 4.

As demonstrated by the example above, the change of a leaf’s c.p.v.

does not necessarily percolate all the way back to root. For the purposes of

complexity analysis, we nevertheless make this pessimistic assumption, and

find that the cost of expanding a node is dominated by this percolation, which

takes time proportional to the height of the tree. Expansion of a single node

therefore has complexity O(log n), so PCN* search is O(n log n), comparable

to BP and better than the MGSS* algorithm.

184



The implementation included in Appendix B searches one conspiracy at

a time. If a greater degree of selectivity were desired, it could easily be

modified to search one node at a time — picking from the most likely con-

spiracy the node with the greatest probability of conspiring. The price for

this greater selectivity would be an increase in meta-calculation costs, al-

though the algorithm would still be O(n log n). Another refinement over

the included implementation would be to modify the criterion for selecting

a conspiracy to investigate. Rather than just choosing the conspiracy with

the greatest probability of making a change in the provisionally best move,

account could be taken of the magnitude of the score difference. Conspiracies

could be valued as follows:

V (C) = PC(Value of Best Move if C works − Value of current Best Move)

We make the point in Section 6.5 that for such a valuation to be sensible,

the ‘value’ in the above expression should not be the simple scalar score, but

should be a replacement that has been calibrated with respect to the final

outcome of the game.

6.3 Choice of Search Step

The choice of search step size is inevitably a matter of compromise. On

the one hand, the desire for selectivity motivates a small search step, on

the other, the desire for minimal meta-calculation costs motivates a large

search step. A further complication is the interaction between the choice of

185



step size and the time-control policy. We saw in Subsection 3.6.2 how the

weakness of a one step lookahead policy was exacerbated by choice of too

small a step size. The MGSS* algorithm of Subsection 1.2.6 suffers from

this problem; the meta-greedy search control policy terminates the search

once the search information has a conspiracy number of two or more. This is

because the search steps are single leaf expansions, which — under the single-

step assumption — are scored individually, so no single step has positive

value.

The BP algorithm of Subsection 1.2.7 avoids this problem by not attempt-

ing to be so selective. This is a pragmatic response to the problem. The pa-

rameter, ‘gulp size’ controls selectivity, providing a continuum of behaviours

from highly selective to non-selective. Experiments by Smith, Baum, Garrett

and Tudor [80] with BP in the game of Othello show how the performance

of BP depends upon a suitable choice of gulp size. They conclude that the

algorithms performs best with a value of around 0.04, so that each search

step expands 4% of the leaves of the search information.

It would be interesting to test the suggestion of Section 1.4 that it is

desirable for the degree of selectivity to increase during the course of search.

This could be done by modifying BP so that the gulp size varied according

to the number of nodes in the search information.

Another refinement to the ‘gulps’ method would be to vary the way in

which a leaf is expanded24. Leaves of the search information with higher QSS

24Russell and Wefald [72] report a significant strengthening of the MGSS* algorithm

186



could be searched, in a single ‘expansion’, to greater depths, while those with

a lower QSS could be only partially expanded (i.e. some of their children

could be generated and appended to the search information). This offers

the possibility of a more reasoned way of tackling the problem of variable

selectivity than the previous suggestion. At the start of the search, its effect

might be expected to be similar, since the low conspiracy number of leaves

in a small tree would result in their high QSS.

Such an approach would benefit from the estimation of probability dis-

tributions for the expansion of nodes to varying depths, and so might be

expected to increase the overhead involved in deciding whether or not to

carry out a gulp of search. On the other hand, as well as increasing the selec-

tivity of each gulp, it would increase their size, and so it need not necessarily

entail an increase in the total burden of meta-calculations.

6.4 Estimation of Probability Distributions

The PSVB*, MGSS*, BP and PCN* algorithms make use of functions which

evaluate a position with a probability distribution. The purpose of these

distributions is to show how the evaluation is likely to change if further

search is carried out. Whilst the PSVB* algorithm obtains this distribution

via a rather obscure method involving the null move search, the more modern

algorithms all use the same method, which might be described as empirical

evaluation, or ‘training’.

when it was modified to partially expand nodes.

187



Human experts originally suggest a number of (usually quite simple)

game-specific evaluation criteria known to be correlated with the winning

chances of a position, and a means of combining them to deduce a single

scalar score. Training proceeds by applying this evaluation function to a

board position. This is searched to a certain depth, and the backed up scalar

score of the position after the further search is noted. Once a large number

of independently sampled positions have been examined in this manner, it

is argued, the evaluation function will have a reliable probability distribu-

tion for each combination25. Russell and Wefald [70, 71, 72] used depth one

searches to deduce their probabilities, while Baum and Smith [6] recommend

empirical choice of the training depth.

One potential problem with this approach, in theory at least, is what we

call the representative positions problem. A set of positions taken from be-

ginners’ games will be very different, in general, from a set of positions from

expert play, and so the probability distributions may also be expected to

differ. Baum and Smith appear to have discovered this problem empirically.

Their solution is to use a two stage procedure. Firstly, the probabilistic ele-

ment of their algorithm is disabled, and games are played using only a static

evaluation function. Positions from these games are then used to calculate

distributions which are, in turn, used to gather another set of positions. The

25The number of training games required may be adjusted by dividing the space of

game positions up into a number of bins, according to the number and granularity of

these criteria.

188



final probability distributions are then calculated with reference to the second

set of positions.

The fact that their description of this was relegated to a footnote suggests

that they did not find this to be a serious problem. They do not mention

why they stopped after two steps of this procedure — whether convergence

had been observed, or whether they were concerned about the possibility of

degeneration. Position evaluation is relatively easy for the games treated by

Baum and Smith (Kalah, Warri and Othello). For a game such as Go, for

which position evaluation is notoriously difficult, the representative positions

problem may prove a serious difficulty. Certainly, the theoretical problem

of how to ‘bootstrap’ a set of positions that are representative of how the

algorithm will play — when it has used the evaluation function derived from

that set — remains unaddressed.

6.5 Utility

The reason why the game tree is searched is that by application of the eval-

uation function, it is possible to distinguish the good from the bad branches,

and so guide both play and search.

For the purposes of guiding search, a static score is too simple a descrip-

tion of what search may reveal; a simple ordering of positions is not sufficient

to measure the importance of searching a node because of the complicated

effect of interactions with the scores of other nodes. We therefore require a

richer representation — i.e. a probability distribution — to represent belief

189



about the possible consequences of search.

For the purposes of guiding play, a reasoned choice of move requires that

an ordering of positions exist. If the positions are scored with probability

distributions, the natural choice is its expectation. The only result of ulti-

mate interest is the outcome of the game, and so if the expectation of the

probability distribution is to be used in this way, it is essential that the scores

be calibrated to the expected reward from playing the game. The MGSS*

and BP algorithms carry out this calibration as explained in the previous

section. The failure of the PSVB* and Probabilistic B* algorithms to carry

out such a procedure is an omission no less serious just because they do not

use expectation to choose between moves.

It is not as simple as is generally believed to calibrate position evaluation

to something that might appropriately be referred to as ‘utility’ (i.e. proba-

bility of winning26), because of the complications raised in Chapter 2. Since

the whole notion of attaching a win probability to a particular position is a

simplification, problems are bound to occur if an attempt is made to exactly

define it in practice.

The notion of ‘utility’ is central to the MGSS* and BP algorithms. They

both make the simplifying assumptions that time cost is separable from the

position to which it is applied, and from the opponent against which they

play. Using L to stand for search information, they assume the following:

26The rest of this section makes the simplifying assumption that there are two only

outcomes, with rewards 0 and 1. This does not restrict the generality of the discussion.

190



U(L, τUs, Opponent, τOpponent, LOpponent) = V (L) + V (τUs)

The fact that the opponent’s search information, LOpponent, is unknown

is clearly a strong practical argument for ignoring it in the calibration. Sim-

ilarly, the case for ignoring the opponent in the calibration process is sup-

ported by the impracticality of having a separate training set for each op-

ponent, or the difficulty and degree of approximation required to determine

statistics able to summarise the range of possible opponents. Eventually,

programs will benefit from calibration according to both the opponent and

inference about the opponent’s search information. In the meantime, the

practical consequence from not taking into account the opponent’s strength

when calibrating the utility function is that the program will play inappro-

priately against an opponent of greatly different ability27. This is not a cause

for great concern, since the primary aim of current research into computer

game-playing is to devise programs that play as strongly as possible in even

games.

The easiest approximation to address in the calibration process is the

complete neglect of the opponent’s time. Since this is readily available, to

completely ignore it may seem rather slack but is in fact so standard as to

27For example, suppose a strong Chess program offered a beginner a queen’s odds. If

the utility function did not take the opponent into account, it would suggest that a loss

was almost certain. This would cause a problem similar to the horizon effect; the program

would play increasingly desperate and risky moves, in the hope that it had underassessed

its chances. By contrast, a human expert would expect the beginner to make simple errors,

and play accordingly.

191



pass without comment in the discussion of computer game-playing28. Never-

theless, it is of use in determining human play, a fact which will be agreed by

any games player who has experience of playing under serious time controls.

The most immediate use of this information would seem to be its (cautious)

application to the area of time control, where it could be added in as another

factor to the rather ad hoc algorithms that are currently the norm. It seems

reasonable to vary the value of time in sympathy with the amount of time the

opponent has. The justification for this is that if the opponent has a lot of

time, this gives him the potential to think deeply about the position and so

cause complications (by playing trick moves etc.) which will cause us to run

short of time. Conversely, if the opponent has very little time, then either he

is in time trouble — which suggests we should look for such complications

— or else he has correctly judged that he will not need much more time, in

which case we have probably been too frugal up to now if we have a lot of

time left.

A more robust use of the opponents’ time would be to take it into account

when calibrating the evaluation functions. Attempting to equate a board

position with a win probability ignores the aspect of time control altogether,

limiting the effectiveness of time control. A more thorough approach would

use a population of games to derive a function U(L, τUs, τOpponent), which

might then be used for time control as well as move selection. The modelling

process can be aided by certain theoretical knowledge of the properties of

28I am not aware of any game-playing programs which use this information.

192



U(). We require a smooth function which is increasing in τUs, decreasing in

τOpponent and — drawing upon the thoughts presented in Section 5.2 — that is

subharmonic in τUs and superharmonic in τOpponent. From a theoretical point

of view such a reasoned approach to time control would be greatly preferable

to the current crude approximations; from a practical point of view, it would

require a considerable increase in the computing power needed to calibrate

the utility function, would lead to a more complicated program and might

decrease the speed slightly, so computer game-playing may take some years

to reach the point where it becomes a priority.

Of the game-playing algorithms devised so far, BP has come closest to

defining a satisfactory model of utility. Inevitably, some sacrifices have been

made to expediency. One of these is the oversimplified time control mech-

anism highlighted above, which, by the authors’ own admission has ‘an an-

noying sickness’ [80].

Another shortcoming of BP is the strategy for leaf expansion. The ‘gulp’

idea is an important way of cutting down meta-calculation costs. However,

the notion of ‘gulp size’ is a rather imperfect implementation of it. No jus-

tification is presented for why the gulp should be a fixed proportion of the

information, much less a constant one. If QSS really is a good approxima-

tion to ‘utility’, a desirable goal would be to expand those leaves with the

largest QSS values, throughout the entire game. This would suggest that

an appropriate mechanism of leaf selection would be to expand in one gulp

all those leaves with a QSS value above a certain threshold. This threshold

193



should be dynamic, changing in response to the findings of search. If time ran

short, if the game looked like taking longer than expected, or if the position

suggested that there would be many leaves with above average QSS ahead,

the threshold should increase. Conversely, it would decrease in the opposite

circumstances — the guiding principle should at every stage be the aim of

maximising expected ‘utility/unit of search’.

6.6 Trends in Computer Game-Playing

At the risk of stating the obvious, I hope that the reader is at this point com-

pletely convinced of the importance of quantifying the uncertainty around a

position’s static evaluation. This remark is by no means as trite as it may

appear to the reader with a statistical background, since this realisation has

taken the artificial intelligence community a very long time29. Almost all

the top game-playing programs have no such element, being basically alpha-

beta search engines with a selection of refinements such as those reviewed in

Section 1.1.

The explanation for this is simple. Research into game-playing has been

largely empirically-driven, and algorithms have not been developed in vitro.

The meta-calculation costs associated with the processing of probability dis-

tributions are very considerable as compared with point estimates, while

29If the research published on tree search and game-playing is any indication, it is only

just becoming widespread, almost 50 years after the notion of computer game-playing was

first mooted by Shannon [76].

194



considerable computing power is required to realise the benefits of greater

selectivity. This alone, apart from their greater intricacy, is sufficient to ex-

plain why probabilistic selective search techniques have not, in the past been

in the mainstream of research. If they had been developed twenty years ago,

they would not have held their own against the sheer speed of non-selective

search algorithms.

One notable exception to the early concentration on ‘brute force’ methods

was the work of the statistician Good. His 1968 “Five Year Plan for Auto-

matic Chess” [30] would more realistically have been entitled a “Twenty

Year Plan”; even in the late 1980’s, when Russell and Wefald introduced

the MGSS* algorithm, they found it only to be comparable with fixed-depth

alpha-beta search30. The recent results of the BP program seem very en-

couraging, and so it seems as if, another 10 years on, selective searching has

finally come of age. Since the advantage of being selective increases with

the amount of computing power available, it will surely not be long before

even the most powerful alpha-beta program, running on specialist hardware,

will succumb to the greater intelligence of game-playing algorithms based on

selective search. If the reader will indulge me in a little prediction, I suggest

that by 2020, all computer game-playing programs will be Bayesians.

30Baum and Smith [6] have suggested that even this may have been an overoptimistic

assessment of its performance.

195



6.7 Conclusion

This work has attacked the problem of computer game-playing from both

ends. At one extreme are the models introduced, which have a provably op-

timal solution, at least in some circumstances. At the other, I have included

some musings about the problem which inspired their development, that of

how a statistically-based game-playing program might work. As we have

seen, this problem does not have an optimal solution — in the classical sense

— so while I may be disappointed with the size of the gap between the two

extremes of study, I make no apology for its existence. I do hope that my

work has gone some way towards enlightening the reader about what may

be achieved by wider application of dynamic stochastic control methods to

the tasks of tree search and game-playing.

It seems appropriate to conclude with the remark that, both as a games

player and as a researcher, I find it a reassuring thought that it is impossible

to define an ‘optimal’ strategy for game-playing, and so this problem is one

which will remain permanently open.

196


	Dynamic Stochastic Control - A New Approach to Game Tree Searching, by
	Robin Upton
	6 Computer Game-Playing
	6.1 Optimality and Limited Rationality
	6.2 Conspiracy Probabilities
	6.2.1 A Redefinition of Conspiracies
	6.2.2 Ø-based Approximation Methods
	6.2.3 PCN* Search

	6.3 Choice of Search Step
	6.4 Estimation of Probability Distributions
	6.5 Utility
	6.6 Trends in Computer Game-Playing
	6.7 Conclusion



